Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2023.1-05
CC BY-SA   Open Access   DOAJ  DOAJ

Lista wydań / Vol. 41, No. 1/2023
Pulmonary Function Improves in Persons with Paraplegia after Partial Body Weight Supported Treadmill Training: a Prospective Randomized Study

Autorzy: Srutarshi Ghosh ORCID
Department of Physical Medicine and Rehabilitation, King George’s Medical University, Lucknow, Uttar Pradesh, India

Anil Kumar Gupta ORCID
Department of Physical Medicine and Rehabilitation, King George’s Medical University, Lucknow, Uttar Pradesh, India

Dileep Kumar ORCID
Department of Physical Medicine and Rehabilitation , King George’s Medical University, Lucknow, Uttar Pradesh, India

Sudhir Mishra ORCID
Department of Physical Medicine and Rehabilitation, King George’s Medical University, Lucknow, Uttar Pradesh, India

Ganesh Yadav ORCID
Department of Physical Medicine and Rehabilitation, King George’s Medical University, Lucknow, Uttar Pradesh, India

Avinash Agarwal
Head of the Department, Critical Care Medicine,King George’s Medical University, Lucknow, Uttar Pradesh, India
Słowa kluczowe: Partial Body Weight Supported Treadmill Training PBWSTT paraplegia improvement ventilation PFT
Data publikacji całości:2023
Liczba stron:12 (49-60)
Cited-by (Crossref) ?:

Abstrakt

Objectives: To evaluate changes in Pulmonary Function Test (PFT) parameters in individuals with paraplegia following Partial Body Weight Supported Treadmill Training (PBWSTT). Design: Randomized controlled trial Setting: Inpatient rehabilitation facility Participants: Adults with chronic SCI (n = 42). Intervention: Patients were randomly allocated in CR group (N= 20) receiving Conventional Rehabilitation or in PBWSTT group (N=22) receiving both Conventional Rehabilitation and PBWSTT for 4 weeks. Main outcome measure(s): Changes in % predicted PFT parameter for the subject’s age, sex and BMI. Results: With PBWSTT, significant PFT changes were VC (P =.009), PEF (p = .001) and ERV (p = .032). In complete SCI, PEF (p = .026) improved, while in incomplete SCI VC (p = .005), ERV (p = .029), PEF( p = .001) improved with PBWSTT. In upper neurological level of injury (NLI) (T6-T11), PBWSTT improved PEF (p = .004) alone while in lower NLI (T12-L2), with PBWSTT both ERV (p = .016) and PEF (p = .035) improved. Conclusions: With added PBWSTT most parameters including Vital Capacity, the global measure of PFT, improved significantly, especially in Lower NLI and incomplete SCI. The positive role of this noninvasive exercise based intervention in improving lung functions comes as an added benefit to the usual benefit of locomotion. This may encourage researchers to design future larger studies to validate it aiming the inclusion of PBWSTT in routine SCI rehabilitation protocols.
Pobierz plik

Plik artykułu

Bibliografia

1.Alajam, R., Alqahtani, A. S., & Liu, W. (2019). Effect of Body Weight-Supported Treadmill Training on Cardiovascular and Pulmonary Function in People With Spinal Cord Injury: A Systematic Review. Topics in spinal cord injury rehabilitation, 25(4), 355–369. https://doi.org/10.1310/sci2504-355
2.Almenoff, P. L., Spungen, A. M., Lesser, M., & Bauman, W. A. (1995). Pulmonary function survey in spinal cord injury: influences of smoking and level and completeness of injury. Lung, 173(5), 297–306. https://doi.org/10.1007/BF00176893
3.Cheng, P. T., Chen, C. L., Wang, C. M., & Chung, C. Y. (2006). Effect of neuromuscular electrical stimulation on cough capacity and pulmonary function in patients with acute cervical cord injury. Journal of rehabilitation medicine, 38(1), 32–36. https://doi.org/10.1080/16501970510043387
4.Dietz V. (2003). Spinal cord pattern generators for locomotion. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 114(8), 1379–1389. https://doi.org/10.1016/s1388-2457(03)00120-2
5.DiMarco, A. F., & Kowalski, K. E. (2013). Activation of inspiratory muscles via spinal cord stimulation. Respiratory physiology & neurobiology, 189(2), 438–449. https://doi.org/10.1016/j.resp.2013.06.001
6.Fugl-Meyer, A. R. (1971). Effects of respiratory muscle paralysis in tetraplegic and paraplegic patients. Scandinavian journal of rehabilitation medicine, 3(4), 141–150.
7.Galeiras Vázquez, R., Rascado Sedes, P., Mourelo Fariña, M., Montoto Marqués, A., & Ferreiro Velasco, M. E. (2013). Respiratory management in the patient with spinal cord injury. BioMed research international, 2013, 168757. https://doi.org/10.1155/2013/168757
8.Garshick, E., Kelley, A., Cohen, S. A., Garrison, A., Tun, C. G., Gagnon, D., & Brown, R. (2005). A prospective assessment of mortality in chronic spinal cord injury. Spinal cord, 43(7), 408–416. https://doi.org/10.1038/sj.sc.3101729
9.Guidelines for care of persons with Spinal Cord Injury in the community: Developed under the Government of India-World Health Organization Collaborative Programme(2008-09) at Christian Medical College; Vellore; India. http://www.cmch-vellore.edu
10.Hallett S, Toro F, Ashurst JV. Physiology, Tidal Volume. [Updated 2021 May 9]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK482502/
11.Harkema S. J. (2008). Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain research reviews, 57(1), 255–264. https://doi.org/10.1016/j.brainresrev.2007.07.012
12.Hemingway, A., Bors, E., &Hobby, R. P. (1958). An investigation of the pulmonary function of paraplegics. The Journal of clinical investigation, 37(5), 773–782. https://doi.org/10.1172/JCI103663
13.Hoh, D. J., Mercier, L. M., Hussey, S. P., & Lane, M. A. (2013). Respiration following spinal cord injury: evidence for human neuroplasticity. Respiratory physiology & neurobiology, 189(2), 450–464. https://doi.org/10.1016/j.resp.2013.07.002
14.Katz, S., Arish, N., Rokach, A., Zaltzman, Y., & Marcus, E. L. (2018). The effect of body position on pulmonary function: a systematic review. BMC pulmonary medicine, 18(1), 159. https://doi.org/10.1186/s12890-018-0723-4
15.Knikou M. (2012). Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural plasticity, 2012, 254948. https://doi.org/10.1155/2012/254948
16.Kokkola, K., Möller, K., & Lehtonen, T. (1975). Pulmonary function in tetraplegic and paraplegic patients. Annals of clinical research, 7(2), 76–79.
17.Ledsome, J. R., & Sharp, J. M. (1981). Pulmonary function in acute cervical cord injury. The American review of respiratory disease, 124(1), 41–44.
18.Lynskey, J. V., Belanger, A., & Jung, R. (2008). Activity-dependent plasticity in spinal cord injury. Journal of rehabilitation research and development, 45(2), 229–240. https://doi.org/10.1682/jrrd.2007.03.0047
19.McMichan, J. C., Michel, L., & Westbrook, P. R. (1980). Pulmonary dysfunction following traumatic quadriplegia. Recognition, prevention, and treatment. JAMA, 243(6), 528–531.
20.Roth, E. J., Nussbaum, S. B., Berkowitz, M., Primack, S., Oken, J., Powley, S., & Lu, A. (1995). Pulmonary function testing in spinal cord injury: correlation with vital capacity. Paraplegia, 33(8), 454–457. https://doi.org/10.1038/sc.1995.99
21.Roth, E. J., Stenson, K. W., Powley, S., Oken, J., Primack, S., Nussbaum, S. B., & Berkowitz, M. (2010). Expiratory muscle training in spinal cord injury: a randomized controlled trial. Archives of physical medicine and rehabilitation, 91(6), 857–861. https://doi.org/10.1016/j.apmr.2010.02.012
22.Roy, R. R., Harkema, S. J., & Edgerton, V. R. (2012). Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Archives of physical medicine and rehabilitation, 93(9), 1487–1497. https://doi.org/10.1016/j.apmr.2012.04.034
23.Schilero, G. J., Spungen, A. M., Bauman, W. A., Radulovic, M., & Lesser, M. (2009). Pulmonary function and spinal cord injury. Respiratory physiology & neurobiology, 166(3), 129–141. https://doi.org/10.1016/j.resp.2009.04.002
24.Stiller, K., Simionato, R., Rice, K., & Hall, B. (1992). The effect of intermittent positive pressure breathing on lung volumes in acute quadriparesis. Paraplegia, 30(2), 121–126. https://doi.org/10.1038/sc.1992.39
25.Soyupek, F., Savas, S., Oztürk, O., Ilgün, E., Bircan, A., &Akkaya, A. (2009). Effects of body weight supported treadmill training on cardiac and pulmonary functions in the patients with incomplete spinal cord injury. Journal of back and musculoskeletal rehabilitation, 22(4), 213–218. https://doi.org/10.3233/BMR-2009-0237
26.Terson de Paleville, D., McKay, W., Aslan, S., Folz, R., Sayenko, D., & Ovechkin, A. (2013). Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respiratory physiology & neurobiology, 189(3), 491–497.
27.Tiftik, T., Gökkaya, N. K., Malas, F. Ü., Tunç, H., Yalçın, S., Ekiz, T., Erden, E., &Akkuş, S. (2015). Does locomotor training improve pulmonary function in patients with spinal cord injury?. Spinal cord, 53(6), 467–470. https://doi.org/10.1038/sc.2014.251
28.Van de Crommert. H. W, Mulder, T., &Duysens, J. (1998). Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait & posture, 7(3), 251–263. https://doi.org/10.1016/s0966-6362(98)00010-1
29.Vetkasov A, Blanka H. Special Breathing Exercises in Persons with SCI and Evaluate their Effectiveness by Using X-ray of Lungs and Other Tests.Athens Journal of Sports (2014).1(4):217-224. https://doi.org/10.30958/ajspo.1-4-1