Studia i Prace WNEiZ US

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Studia i Prace WNEiZ

ISSN: 2450-7733     eISSN: 2300-4096    OAI    DOI: 10.18276/sip.2018.51/3-16
CC BY-SA   Open Access 

Issue archive / nr 51/3 2018
Równowaga rynkowa i cykl koniunkturalny. Model matematyczny
(Equilibrium and business cycle. Mathematical model)

Authors: Robert Kruszewski
Szkoła Główna Handlowa w Warszawie Kolegium Analiz Ekonomicznych
Keywords: business cycle equilibrium chaos bifurcation attractor
Data publikacji całości:2018
Page range:15 (197-211)
Klasyfikacja JEL: C02 C62 E32
Cited-by (Crossref) ?:

Abstract

We investigate the dynamics of the proposed nonlinear business cycle model with expectations. The possible long-term behaviour of the national income has been described. We investigate, how the dynamics of the model depend on parameters.
Download file

Article file

Bibliography

1.Gallegati, M., Gardini, L., Puu, T., Sushko, I. (2003). Hicks’ trade cycle revisited: cycles and bifurcations. Mathematics and Computers in Simulation, 63, 505–527.
2.Goodwin, R.M. (1951). The nonlinear accelerator and the persistence of business cycles. Econometrica, 19, 1–17.
3.Hicks, J.R. (1950). A contribution to the theory of the trade cycle. Oxford: Oxford University Press.
4.Kruszewski, R. (2009). Wielostabilność w nieliniowym modelu Hicksa z oczekiwaniami. W: T. Bernat (red.), Teoretyczne i praktyczne aspekty funkcjonowania gospodarki. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
5.Kruszewski, R. (2011). Expectations and the multiplier-accelerator model with investment floor and income ceiling. W: D. Kopycińska (red.), Selected problems of market economy in the crisis era. Szczecin: Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
6.Kruszewski, R. (2016). Atraktory okresowe, quasi-okresowe i chaotyczne w nieliniowym modelu Hicksa. Studia i Prace WNEiZ US, 2 (44), 191–208.
7.Li, T.Y., Yorke, J.A. (1975). Period Three Implies Chaos. American Mathematical Monthly, 82, 985–992.
8.Lorenz, H.W. (1992). Multiple attractors, complex basin boundaries, and transient motion in deterministic economic systems. W: G. Feichtinger (red.), Dynamic economic models and optimal control (s. 411–430). Amsterdam: North-Holland.
9.Manfredia, P., Fantib, L. (2004). Cycles in dynamic economic modeling. Economic Modelling, 21, 573–594.
10.Matsumoto, A., Szidarovszky, F. (2015). Nonlinear multiplier-accelerator model with investment and consumption delays. Structural Change and Economic Dynamics, 33, 1–9.
11.Medio, A., Lines, M. (2001). Economic Dynamics. A Primer. Cambridge: Cambridge University Press.
12.Puu, T. (2003). Attractors, bifuracations, & chaos. Berlin–Heilderberg–New York: Springer.
13.Puu, T., Gardini, L., Sushko, I. (2005). A Hicksian multiplier-accelerator model with floor determined by capital stock. Journal of Economic Behavior & Organization, 56, 331–348.
14.Puu, T., Sushko I. (2004). A business cycle model with cubic nonlinearity. Chaos, Solitons and Fractals, 19, 597–612.
15.Saura, D., Vazquez, F.J., Vegas, J.M. (1998). Non-chaotic oscillations in some regularized Hicks models. A restatement of the ceiling and floor conditions. Journal of Economic Dynamics and Control, 22, 661–678.