Studia i Prace WNEiZ US

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Studia i Prace WNEiZ

ISSN: 2450-7733     eISSN: 2300-4096    OAI    DOI: 10.18276/sip.2016.45/2-01
CC BY-SA   Open Access   CEEOL

Issue archive / nr 45/2 2016
MODELE HAZARDU A MODEL LOGITOW
(Hazard model versus logit model)

Authors: Beata Bieszk-Stolorz
Uniwersytet Szczeciński
Keywords: Cox’s regression model the empirical hazard model logistic regression unemployment
Year of publication:2016
Page range:12 (11-22)
Klasyfikacja JEL: C51 J64
Cited-by (Crossref) ?:

Abstract

The aim of the article is the comparison of two groups of models used in the event history analysis. The first one encompasses continuous-time models which describe event intensity (hazard) at any moment of time. The Cox proportional hazard model are used in the study. The second group consists of discrete-time models. The analysis is based on the logistic regression model (the probability of an event to occur at the discrete time) and the empirical hazard model (for the grouped data). The research material includes individual data of the unemployed beneficiaries registered in 2012 by the Poviat Labour Office in Szczecin as observed by the end of 2013. The authors determine the relative unemployment exit intensity and the relative employment odds by the unemployed person’s gender, age, education and employment history.
Download file

Article file

Bibliography

1.Allison, P.D. (1982). Discrete-Time Methods for the Analysis of Event Histories. Sociological Methodology, 13, 61–98.
2.Allison, P.D. (1984). Event History Analysis: Regression for Longitudinal Event Data. Beverly Hills CA: SAGE Publications.
3.Bieszk-Stolorz, B. (2013). Analiza historii zdarzeń w badaniu bezrobocia. Szczecin: Volumina. pl Daniel Krzanowski.
4.Bieszk-Stolorz, B., Markowicz, I. (2012). Modele regresji Coxa w analizie bezrobocia. Warszawa: CeDeWu.
5.Brown, C.C. (1975). On the Use of Indicator Variables for Studying the Time Dependence of Parameters in a Response-Time Model. Biometrics, 31, 863–872.
6.Byar, D.P., Mantel, N. (1975). Some Interrelationships among the Regression Coefficient Estimates Arising in a Class of Models Appropriate to Response-Time Data. Biometrics, 31, 943–947.
7.Cox, D.R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B, 34, 187–220.
8.Frątczak, E., Gach-Ciepiela, U., Babiker, H. (2005). Analiza historii zdarzeń. Elementy teorii, wybrane przykłady zastosowań. Warszawa: Wyd. SGH.
9.Holford, T.R. (1976). Life Tables with Concomitant Information. Biometrics, 32, 587–597.
10.Holford, T.R (1980). The Analysis of Rates and of Survivorship Using Log-Linear Models. Biometrics, 36, 299–305.
11.Mantel, N., Hankey, B. (1978). A Logistic Regression Analysis of Response-Time Data Where the Hazard Function is Time Dependent. Communications in Statistics – Theory and Methods, A7, 333–347.
12.Myers, M.H., Hankey, B.F., Mantel, N. (1973). A Logistic-Exponential Model for Use with Response-Time Data Involving Regressor Variables. Biometrics, 29, 257–269.
13.Prentice, R.L., Gloeckler, L.A. (1978). Regression Analysis of Grouped Survival Data with Application to Breast Cancer Data. Biometrics, 34, 57–67.
14.Thompson, W.A., JR. (1977). On the Treatment of Grouped Observations in Life Studies. Biometrics, 33, 463–470.
15.Yamaguchi, K. (1991). Event History Analysis. Newbury Park CA: SAGE Publications