Zeszyty Naukowe Uniwersytetu Szczecińskiego. Studia Informatica

Aktualnie: Studia Informatica Pomerania

ISSN: 0867-1753     eISSN: 2300-410X     DOI: 10.18276/si.2015.38-07
CC BY-SA   Open Access 

Lista wydań / ZN 878 SI nr 38
Zastosowanie metody mini-modeli opartej na hipersześcianie w procesie modelowania danych wielowymiarowych

Rok wydania:2015
Liczba stron:13 (91-103)
Słowa kluczowe: modelowania matematyczne algorytm najbliższych sąsiadów lokalna regresja mini-model metody bazujące na próbkach
Autorzy: Marcin Pietrzykowski
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Informatyki

Abstrakt

W artykule zaprezentowano metodę samo-uczenia mini-modeli (metodę MM) opartą na hiperbryłach w przestrzeni wielowymiarowej. Jest to metoda nowa i rozwojowa, będąca w trakcie intensywnych badań. Bazuje ona na próbkach pobieranych jedynie z lokalnego otoczenia punktu zapytania, a nie z obszarów odległych od tego punktu. Grupa punktów, używana w procesie uczenia mini-modelu jest ograniczona obszarem hiperbryły. na tak zdefiniowanym lokalnym otoczeniu punktu zapytania metoda MM w procesie uczenia oraz obliczania odpowiedzi można użyć dowolnej metody aproksymacji. W artykule przedstawiono algorytm uczenia i działania metody w przestrzeni wielowymiarowej bazujący na hipersferycznym układzie współrzędnych. Metodę przebadano na zbiorach danych wielowymiarowych, a wyniki porównano z innymi metodami bazującymi na próbkach.
Pobierz plik

Plik artykułu

Bibliografia

1.Bottou L., Vapnik V. (1992), Local Learning Algorithms, „Neural Computation”, vol. 4, iss. 6, s. 888–900.
2.Bronshtein I., Semendyayev K., Musiol G., Muhlig H. (2007), Handbook of Mathematics, Springer.
3.Celikoglu H.B. (2006), Application of radial basis function and generalized regression neural networks in non-linear utility function specication for travel mode choice modelling, „Mathematical and Computer Modelling”, vol. 44, iss. 7–8, s. 640–658.
4.Fan J.Q. (1992), Design-adaptive nonparametric regression, „Journal of the American Statistical Association”, vol. 87, iss. 420, s. 998–1004.
5.Fix E., Hodges J.L. (1951), Discriminatory analysis, nonparametric discrimination: Consistency properties, Randolph Field, s. 1–21.
6.Hollash S.R. (1991), Four Space Visualization of 4D Objects, Arizona State University.
7.Fukunaga K., Narendra P.M. (1975), Branch and bound algorithm for computing k-nearest neighbors, „IEEE Transactions on Computers”, vol. C24, iss. 7, s. 750–753.
8.Moon P., Spencer D. (1988), Field theory handbook: including coordinate systems, differential equations, and their solutions, Springer.
9.Park J., Wasenberg J. (1991), Universal approximation using radial basis functions network, „Neural Computation”, vol. 3, s. 246–257.
10.Piegat A., Wąsikowska B., Korzeń M. (2010), Zastosowanie samouczącego się trzypunktowego minimodelu do modelowania stopy bezrobocia w Polsce, „Studia Informatica”, nr 27, s. 59–69.
11.Piegat A., Wąsikowska B., Korzeń M. (2011), Differences between the method of mini-models and the k-nearest neighbors an example of modeling unemployment rate in Poland, Information Systems in Management IX-Business Intelligence and Knowledge Management,
12.Pietrzykowski M. (2011a), Comparison of effectiveness of linear mini-models with some methods of modelling, Młodzi Naukowcy dla Polskiej Nauki. CRE ATI VETI ME, Kraków, s. 113–123.
13.Pietrzykowski M. (2011b), The use of linear and nonlinear mini-models in process of data modeling in a 2D-space, Nowe trendy w Naukach Inżynieryjnych. CRE ATI VETI ME, Kraków, s. 100–108.
14.Pietrzykowski M. (2012), Effectiveness of mini-models method when data modelling within a 2D-space in an information deficiency situation, „Journal of Theoretical and Applied Computer Science”, vol. 6, no. 3, s. 21–27.
15.Pietrzykowski M. (2013), Mini-models working in 3D space based on polar coordinate system, Nowe trendy w Naukach Inżynieryjnych 4. Tom II , CRE ATI VETI ME, Kraków, s. 117–125.
16.Pietrzykowski M. (2014), Comparison between mini-models based on multidimensional polytopes and k-nearest neighbor method: case study of 4D and 5D problems, „Advances in Intelligent Systems and Computing”, vol. 342, s. 107–118.
17.Pluciński M. (2012a), Mini-models – Local Regression Models for the Function Approximation Learning, w: Proceedings of IC AISC 2012, Part II , LNCS 7268, red. L. Rutkowski, Springer-Verlag, Berlin–Heidelberg, s. 160–167.
18.Pluciński M. (2012b), Nonlinear ellipsoidal mini-models – application for the function approximation task, „Przegląd Elektrotechniczny”, r. 88, nr 10b, s. 247–251.
19.Pluciński M. (2014), Application of Mini-Models to the Interval Information Granules Processing, „Advances in Intelligent Systems and Computing”, vol. 342, s. 37–48.
20.Poggio T., Girosi F. (1990), Network for approximation and learning, „Proceedings of the IEEE ”, vol. 78, no. 9, s. 1481–1497.
21.Polyanin A., Manzhirov A. (2010), Handbook of Mathematics for Engineers and Scientists, Taylor & Francis.
22.Ruppert D., Wand M.P. (1994), Multivariate locally weighted least-squares regression, „Annals of Statistics”, vol. 22, iss. 3, s. 1346–1370.
23.Specht D.F. (1991), A General Regression Neural Network, „IEEE Transactions on Neural Networks”, vol. 2, no. 6, s. 568–576.
24.Uci machine learning repository, http://archive.ics.uci.edu/ml (25.04.2015).