Problemy Transportu i Logistyki

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Problemy Transportu i Logistyki

ISSN: 1644-275X     eISSN: 2353-3005    OAI    DOI: 10.18276/ptl.2019.46-06
CC BY-SA   Open Access 

Issue archive / nr 2 (46) 2019
OCENA BATERII LITOWO-JONOWYCH STOSOWANYCH W SAMOCHODACH ELEKTRYCZNYCH TYPU BEV POD WZGLĘDEM BEZPIECZEŃSTWA I WPŁYWU NA ŚRODOWISKO
(EVALUATION OF LITHIUM-ION BATTERIES USED IN BEV ELECTRIC CARS IN TERMS OF SAFETY AND ENVIRONMENTAL IMPACT)

Authors: Ewelina Sendek-Matysiak
Uniwersytet Szczeciński
Keywords: accumulator battery emission of pollution electric vehicle recycling
Year of publication:2019
Page range:10 (59-68)
Klasyfikacja JEL: R11 R42
Cited-by (Crossref) ?:

Abstract

Currently, the most commonly used batteries (commonly referred to as batteries) in cars with electric drive type BEV are lithium-ion cells. The period of their operation is taken there for about 10 years. In 2018, the share of this type of car in the European Union automotive market was small and amount-ed to 0.8%. However, according to Community policy, in 2030 they are to account for 50% of used passen-ger cars, and after 2035 according to (ING Economics Department, 2017) all cars sold at that time are to be fully electric. The increasing number of BEVs, and hence the number of Li-Ion batteries installed there, raises the question of how the production, operation and ultimately recycling of such batteries affect people and the surrounding environment One of the repeated accusations of electric vehicles is that their zero emission in the place of use is burdened with environmentally harmful battery production, which changes in a relatively short time into toxic electro-waste. Therefore, the author of this work will describe, among others, Is the use of such batteries safe, what is the actual emission of pollution that accompanies the production of lithium-ion batteries, as well as the possibility of their use after dismantling from vehicle.
Download file

Article file

Bibliography

1.Battery University (2018). Pobrane z: http://batteryuniversity.com (11.12.2018).
2.Buekers, J., Van Holderbeke, M., Bierkens, J., Int Panis, L. (2014). Health and environmental benefits related to electric vehicle introduction in EU. Transportation Research Part D: Transport and Environment, 33, 26–38. Pobrane z: https:// www.sciencedirect.com/science/article/pii/S136192091400128X (11.12.2018).
3.Czerwiński, A. (2016). Akumulatory, baterie, ogniwa. Warszawa: Wydawnictwo Komunikacji i Łączności.
4.Jaworowska, M. (2017). Akumulatory Li-Ion – czy zabraknie materiałów do ich budowy. Pobrane z: http://elektronikab2b.pl/ biznes/33923-akumulatory-li-ion-czy-zabraknie-materialow-do-ich-budowy (8.12.2018).
5.Ellingsen, L.A.-W. (2017). Life cycle assessment of lithium-Ion traction batteries. Pobrane z: https://brage.bibsys.no/xmlui/ handle/11250/2447224 (3.12.2018).
6.Ellingsen, L.A.-W., Singh, B., Strømman, H. (2017). The size and range effect: lifecycle greenhouse gas emis-sions of electric vehicles. Environmental Research Letters, 11 (5). 10.1088/1748-9326/11/5/054010.
7.Hawkins, T.R., Singh, B., Majeau-Bettez, G., Strømman, A.H. (2012). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17 (1), 53–64. 10.1111/j.1530-9290.2012.00532.x.
8.HobbyRobotyka.pl (2018). Pobrane z: http://hobbyrobotyka.pl/jaki-akumulator-do-robota-wybrac/ogniwa_szer_rowno-legle (11.12.2018).
9.Hocking, M., Kan, J., Young, P., Terry, Ch. Begleiter, D. (2016). Lithium 101. Deutsche Bank, Markets Research. Pobrane z:
10.https://www.slideshare.net/Tehama/welcome-to-the-lithium-ion-age-lithium-101-deutsche-bank-may-9-2016.
11.ING (2017). Breakthrough of electric vehicle threatens European car industry. Pobrane z: https://www.ing.nl/media/ing_ebz_ breakthrough-of-electric-vehicle-threatens-european-car-industry_tcm162-128687.pdf (24.11.2018).
12.Kim, H.C., Wallington, T.J., Arsenault, R., Bae, C., Ahn, S., Lee, J. (2016). Cradle-to-gate emissions from a commercial electric vehicle li-ion battery: A comparative analysis. Environmental Science and Technology, 50, 7715–7722.
13.Li, B., Gao, X., Li, J., Yuan, C. (2014). Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environmental Science and Technology, 48, 3047–3055.
14.Luque, A., Hegedus, S. (2011). Handbook of photovoltaic science and engineering. Wiley: Chichester.
15.Notter, D.A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., Althaus, H.-J. (2010). Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environmental Science and Technology, 44, 6550–6556.
16.Parlament Europejski. Dyrekcja Generalna ds. Polityki Wewnętrznej, Departament Tematyczny ds. Polityki Strukturalnej i Polityki Spójności: Badanie dla Komisji Transportu i Turystyki (2018). Samochody elektryczne o napędzie batery-jnym: rozwój rynku i emisje w całym cyklu życia.
17.Pillot, Ch. (2017). The Rechargeable Battery Market and Main Trends 2016–2025. Pobrane z: http://cii-resource.com/cet/ FBC-TUT8/Presentations/Pillot_Christophe.pdf.
18.Randall, T. (2016). Here’s how electric cars will cause the next oil crisis. A shift is under way that will lead to widespread adoption of EVs in the next decade. Pobrane z: https://www.bloomberg.com/features/2016-ev-oil-crisis/ (29.10.2018).
19.Sipiński, D., Bolesta, K. (2016). Cicha rewolucja w energetyce. Elektromobilność w Polsce. Kluczowe wnioski i rekomendacje.
20.Pobrane z: https://www.politykainsight.pl/_resource/multimedium/20106685 (15.11.2018).
21.Yoshio, M., Brodd, R.J., Kozawa, A. (2009). Lithium-Ion Batteries: science and technologies. New York: Springer.
22.Zawadzki, M. (2015). Samochody elektryczne – jak działają. Pobrane z: https://www.magazyn-motoryzacyjny.pl/samocho-dy-elektryczne.html (28.12.2018).