Zeszyty Naukowe Uniwersytetu Szczecińskiego. Problemy Zarządzania, Finansów i Marketingu

Aktualnie: Marketing i Zarządzanie

ISSN: 1509-0507     eISSN: 2353-2874     DOI: 10.18276/pzfm.2015.41/2-22
CC BY-SA   Open Access 

Lista wydań / ZN 875 PZFiM nr 41 t. 2
Big data koniecznością współczesnego marketingu

Rok wydania:2015
Liczba stron:14 (265-278)
Słowa kluczowe: źródło informacji marketing wspomaganie decyzji big data Business Intelligence
Autorzy: Magdalena Graczyk-Kucharska
Politechnika Poznańska

Abstrakt

Celem artykułu jest przybliżenie pojęcia big data oraz zaprezentowanie obszarów zastosowania big data przez współczesnego marketera. Big data to źródło informacji przyczyniające się nie tylko do wspomagania bieżących decyzji organizacji, ale przede wszystkim pozwalające prognozować kierunki rozwoju przedsiębiorstw w celu zwiększenia efektywności ekonomicznej organizacji oraz zwiększenia jakości oferowanych produktów. Wśród działań operacyjnych, w których wykorzystać można big data można zaliczyć m.in. wybór grup docelowych działań promocyjnych prowadzonych w internecie, podejmowanie działań w obszarze wyboru grup docelowych czy zwiększanie efektywności działań operacyjnych. Marketerzy przyzwyczajają się do szybszego reagowania na podstawie coraz bogatszych źródeł danych. Oczekują także łatwego, a przede wszystkim samoobsługowego dostępu do zasobów. Big data mogą zaspokoić te potrzeby.

Pobierz plik

Plik artykułu

Bibliografia

1.Ayankoya K., Calitz A., Greyling J., Intrinsic relations between Data Science, Big Data, Business Analytics and Datafication, SAICSIT ’14, Proceedings of the Southern African Institute for Computer Scientist and Information Technologists Annual Conference
2.Baaziz A., Quoniam L., How to use Big Data technologies to optimize operations in Upstream Petroleum Industry, „International Journal of Innovation” 2013, Vol. 1, http://www.journaliji.org/index.php/iji/article/view/4.
3.Brachman A., Raport Obserwatorium ICT. Internet przedmiotów, 2013, http://ris.slaskie.pl/files/zalaczniki/2013/11/15/1384514944/1385471147.pdf.
4.Caldarola E.G., Picariello A., Castelluccia D., Modern enterprises in the bubble: why Big Data Matters, ACM SIGSOFT Software Engineering Notes, Vol 40, ACM, New York 2015.
5.deRoss D. et al., Understanding Big Data: Analytics for enterprise Class Hadoop and Streaming Data, McGraw-Hill, New York 2011.
6.Fernández et al., Big Data with Cloud Computing: an insight on the computing environment, MapReduce, and programming frameworks, WIREs Data Mining and Knowledge Discovery 2014, Vol. 4, Iss. 5.
7.Goliński M. et al., Technological and organizational determinants of information management in the urban space (based on scientific research), ICUIMC ’12 The 6th International Conference on Ubiquitous Information Management and Communication, Article No.
8.Goonetilleke O. et al., Twitter analytics: a big data management perspective, ACM SIGKDD Explorations Newsletter – Special issue on big data, Vol. 16, Iss. 1, New York 2014.
9.Hansmann T., Niemeyer P., Big Data – Characterizing an Emerging Research Field Using Topic Models, WI-IAT ’14 Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) – Vol. 1,
10.Hillman T., Weilenmann A.H., Situated social media use: a methodological approach to locating social media practices and trajectories, „CHI ’15 Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, ACM, New York 2015.
11.Januszewski A., Technologia informacyjna dla prawników i administratywistów, Diffin, Warszawa 2009.
12.Kemp S., Digital, Social and Mobile Worldwide in 2015, http://wearesocial.net/blog/2015/01/digital-social-mobile-worldwide-2015/.
13.Kolegowicz K., Wartość informacji a koszty jej przechowania i ochrony, w: Informacja w zarządzaniu przedsiębiorstwem. Pozyskiwanie, wykorzystanie i ochrona (wybrane problemy teorii i praktyki), red. R. Borowiecki, M. Kwieciński, Kantor Wydawniczy Zakamycz
14.Kwiatkowska A., Systemy wspomagania decyzji. Jak korzystać z wiedzy i informacji, Wyd. Naukowe PWN, Warszawa 2007.
15.Marx V., The big challenges of big data, „Nature” 2013, Vol. 498.
16.Mayer-Schönberger V., Cukier K, Big Data – rewolucja, która zmieni nasze myślenie, pracę i życie, MT Biznes, Warszawa 2014.
17.Menon A., Big data @ facebook, MBDS ’12 Proceedings of the 2012 workshop on Management of big data systems, ACM, New York 2012.
18.Pokornowski M., The fourth V, as in evolution: How evolutionary linguistics can contribute to data science, „Theoria et Historia Scientiarum” 2015, Vol. XI.
19.Riggins F.J., Wamba S.F., Research directions on the adoption, usage, and impact of the Internet of Things through the use of Big Data Analytics, HICSS ’15 Proceedings of the 2015 48th Hawaii International Conference on System Sciences, IEEE Computer Soci
20.Sondhi S., Arora R., Applying Lessons from e-Discovery to Process Big Data using HPC, XSEDE’14 Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment, Article No. 8, ACM, New York 2014.
21.Społeczeństwo informacyjne w Polsce, GUS, 2014, http://stat.gov.pl/obszary-tematyczne/nauka-i-technika-spoleczenstwo-informacyjne/spoleczenstwo-informacyjne/.
22.Sumbaly R., Kreps J., Shah S., The big data ecosystem at LinkedIn, SIGMOD ’13 Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, ACM, New York 2013.
23.Szymanek V., Pieniek M., Społeczeństwo informacyjne w liczbach, Ministerstwo Administracji i Cyfryzacji, Warszawa 2013.
24.Vossen G., Big data as the new enabler in business and other intelligence, „Vietnam Journal of Computer Science” 2014, Vol. 1.
25.Wang W. et al., Harnessing Twitter „big data” for automatic emotion identification, International Conference on Privacy, Security, Risk and Trust, PASSAT and Internationale Conference on Social Computing SocialComp, IEEE, Amsterdam 2012.
26.Wu X et al., Data mining with big data, „IEEE Transactions on Knowledge & Data Engineering” 2014, Vol. 26.
27.Zeni M., Miorandi D., De Pellegrini F., YouStatAnalyser: a tool for analysing the dynamics of YouTube content popularity, ValueTools ’13 Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools, ISCT, Brussels 2013
28.Zhou M.X., „Big picture”: mixed-initiative visual analytics of Big Data, VINCI ’13 Proceedings of the 6th International Symposium on Visual Information Communication and Interaction, ACM, New York 2013.