Finanse, Rynki Finansowe, Ubezpieczenia

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia

ISSN: 2450-7741     eISSN: 2300-4460    OAI    DOI: 10.18276/frfu.2018.91-40
CC BY-SA   Open Access 

Issue archive / 1/2018 (91)
Symetryczne opcje potęgowe – propozycja nowej koncepcji wyceny za pomocą transformaty Fouriera
(PRICING SYMMETRIC POWER OPTIONS – PROPOSITION OF A NEW METHOD BASED ON THE FOURIER TRANSFORM)

Authors: Arkadiusz Orzechowski
Szkoła Główna Handlowa
Keywords: symmetric power options Fourier transform Black-Scholes model
Data publikacji całości:2018
Page range:13 (501-513)
Klasyfikacja JEL: C65 G12 G13
Cited-by (Crossref) ?:

Abstract

The purpose of this article is to present a new way of valuing symmetric power options and to compare it with alternative concepts that can be used to determine the theoretical values of the contracts, i.e. martingale and J. Zhu methods. The methodology of the conducted research is based on comparing the accuracy and computational speed of every approach to pricing symmetric power options. The obtained results allow to conclude that the use of Fourier transforms for the valuation of options slows down the valuation process in relation to the martingale approach. However, due to the universality of approaches based on the Fourier transform (the possibility of their use to determine the value of options under the conditions of randomness of underlying assets’ prices), they can not be considered unambiguously worse. The greatest value of the submitted paper is a possibility of applying the author's method of pricing symmetric power options and analysis of its speed and computational accuracy.
Download file

Article file

Bibliography

1.Bachelier, L. (1900). Théorie de la speculation. Annales scientifiques de l’École Normale Supérieure, 3 (17), 21–86.
2.Bakshi, G., Madan, D. (2000). Spanning and derivative – security valuation. Journal of Financial Economics, 2 (55), 205–238.
3.Barndorff-Nielsen, O.E. (1991). Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics, 1 (24), 1–13.
4.Barndorff-Nielsen, O.E. (1995). Normal inverse Gaussian processes and the modelling of stock returns. Research Report, 300. Aarhus University: Department Theoretical Statistics.
5.Barndorff-Nielsen, O.E. (1998). Processes of normal inverse Gaussian type. Finance Stochastics, 1 (2), 41–68.
6.Bates, D.S. (1996). Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options. The Review of Financial Studies, 1 (9), 69–107.
7.Bates, D.S. (2006). Maximum likelihood estimation of latent affine processes. Review of Financial Studies, 3 (19), 909–965.
8.Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 3 (81), 637–654.
9.Carr, P., Geman, H., Madan, D.B., Yor M. (2002). The fine structure of asset returns: An empirical investigation. Journal of Business, ‑2 (75), 305–332.
10.Carr, P., Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2 (4), 61–73.
11.Dufrense, P.C., Keirstead, W., Ross, M.P. (1996). Pricing derivatives the martingale way. Pobrano z: http://www.haas.berkeley.edu/groups/finance/WP/rpf279.pdf (8.12.2017).
12.Esser, A. (2004). Pricing in (in)complete markets: Structural analysis and applications. Lecture Notes in Economics and Mathematical Systems, 537. DOI: 10.1007/978-3-642-17065-2.
13.Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 2 (6), 327–343.
14.Ibrahim, S.N.I., O’Hara, J.G., Constantinou, N. (2013). Pricing power options under the Heston dynamics using the FFT. New Trends in Mathematical Sciences, 1 (1), 1–9.
15.Ibrahim, S.N.I., O’Hara, J.G., Zaki, M.S.M. (2016). Pricing formula for power options with jump-diffusion. Applied Mathematics & Information Sciences. An International Journal, 4 (10), 1313–1317.
16.Kim, J., Kim, B., Moon, K. S., Wee, I. S. (2012). Valuation of power options under Heston’s stochastic volatility model. Journal of Economic Dynamics and Control, 36 (11), 1796–1813.
17.Kou, S. (2002). Jump-diffusion model for option pricing. Management Science, 8 (48), 1086–1101.
18.Lewis, A. (2001). A simple option formula for general jump-diffusion and other exponential Levy processes. SSRN Electronic Journal, 1–25.
19.Lipton, A. (2002). The Vol Smile Problem. Pobrano z: http://www.math.ku.dk/~rolf/Lipton_VolSmileProblem.pdf (8.12.2017).
20.Madan, D., Carr, P., Chang, E. (1998). The variance gamma process and option pricing. European Finance Review, 1 (2), 79–105.
21.Madan, D.B., Milne, F. (1991). Option pricing with VG martingale components. Mathematical Finance, 1 (4), 39–55.
22.Merton, R.C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 1–2 (3), 125–144.
23.Orzechowski, A. (2016). Analiza efektywności obliczeniowej opcji na przykładzie modelu F. Blacka i M. Scholesa. Finanse, 1 (9), 137–154.
24.Rydberg, T.H. (1997). The normal inverse Gaussian Levy Process: Simulation and approximation. Communication in Statistics Stochastic Models, 4 (13), 887–910.
25.Stein, E.M., Stein, J.C. (1991). Stock price distribution with stochastic volatility: An analytic approach. The Review of Financial Studies, 4 (4), 727–752.
26.Zhang, P.G. (1998). Exotic options. A guide to second generation options. Singapore: World Scientific Publishing.
27.Zhu, J. (2000). Modular pricing of options: An application of Fourier analysis. Lecture Notes in Economics and Mathematical Systems, 493. DOI: 10.1007/978-3-662-04309-7.