Finanse, Rynki Finansowe, Ubezpieczenia

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia

ISSN: 2450-7741     eISSN: 2300-4460    OAI    DOI: 10.18276/frfu.2017.88/1-39
CC BY-SA   Open Access 

Issue archive / 4/2017 (88) cz. 1
Wykorzystanie modelu CART-Logit do analizy fałszerstw sprawozdań finansowych
(THE HYBRID CART-LOGIT MODEL APPLICATION IN THE DETECTION OF FALSIFIED FINANCIAL STATEMENT)

Authors: Marek Sylwestrzak
Wydział Nauk Ekonomicznych Uniwersytetu Warszawskiego
Keywords: logit regression decision trees accounting fraud American market
Year of publication:2017
Page range:10 (403-412)
Cited-by (Crossref) ?:

Abstract

Purpose – The elaboration a hybrid CART-Logit model to detection of the financial statement fraud based on the financial data from the US companies accused by the US Securities and Exchange Commission manipulating financial statements of the rule 10(b)-5 Securities Exchange Act between 2000–2007. Design/methodology/approach – In the study a hybrid CART-Logit model is used with ten financial ratios. Findings – The results con rm that a hybrid model had greater predictive power than ordinary logistic regression. The inclusion of the Altman model increased the accuracy of the method. The analysis con rmed that that the most sensitive position in financial statement is cash. Originality/value – The article is an empirical analysis of capabilities in detection of financial statements fraud based on new research method.
Download file

Article file

Bibliography

1.Association of Certi ed Fraud Examiners (2014). Report to the Nations on Occupational Fraud and Abuse. 2014 Global Fraud Study.
2.Ata, H., Seyrek, I. (2009). The Use of Data Mining Techniques in Detecting Fraudulent Financial Statements: An Application on Manufacturing Firms. The Journal of Faculty of Economics and Administrative Sciences, 14 (2), 157–170.
3.Basu, S. (1997). The Conservatism Principle and the Asymmetric Timeliness of Earnings. Journal of Accounting and Economics, 24 (1), 3–37.
4.Beasley, M. (1996). An Empirical Analysis of the Relation between the Board of Director Composition and Finan- cial Statement Fraud. Accounting Review, 71 (4), 443–465.
5.Beneish, M. (1999). The Detection of Earnings Manipulation. Financial Analysts Journal, 55 (5), 24–36.
6.Dechow, P., Ge, W., Larson, C., Sloan, R. (2011). Predicting Material Accounting Misstatements. Contemporary Accounting Research, 28 (1), 17–82.
7.Fich, E.M., Shivdasani, A. (2007). Financial Fraud, Director Reputation, and Shareholder Wealth. Journal of Financial Economics, 86 (2), 306–333.
8.Givoly, D., Hayn, C. (2002). Rising Conservatism: Implications for Financial Analysis. Financial Analysts Journal, 58 (1), 56–74.
9.Grove, H., Cook, T. (2004). Lessons for Auditors: Quantitative and Qualitative Red Flags. Journal of Forensic Accounting, 5 (1), 131–146.
10.Gupta, R., Gill, N. (2012). Prevention and Detection of Financial Statement Fraud – An Implementation of Data Mining Framework. Editorial Preface, 3 (8), 150–160.
11.Johnson, S., Ryan, H., Tian, Y. (2009). Managerial Incentives and Corporate Fraud: The Sources of Incentives Matter. Review of Finance, 13 (1), 115–145.
12.Kotsiantis, S., Koumanakos, E., Tzelepis, D., Tampakas, V. (2006). Forecasting Fraudulent Financial Statements Using Data Mining. International Journal of Computational Intelligence, 3 (2), 104–110.
13.Loh, W. (2011). Classi cation and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1 (1), 14–23.
14.Łapczyński, M. (2014). Modele hybrydowe C&RT-Logit w analizie migracji klientów. Studia Ekonomiczne, 195, 90–102.
15.Pai, P., Hsu, M., Wang, M. (2011). A Support Vector Machine-Based Model for Detecting Top Management Fraud. Knowledge-Based Systems, 24 (2), 314–321.
16.Persons, O. (1995). Using Financial Statement Data to Identify Factors Associated with Fraudulent Financial Reporting. Journal of Applied Business Research, 11 (3), 38–46.
17.Piosik, A. (2016). Kształtowanie wyniku nansowego przez podmioty sprawozdawcze w Polsce. Diagnoza dobrej i złej praktyki w rachunkowości. Katowice: Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach.
18.Rezaee, Z. (2005). Causes, Consequences, and Deterence of Financial Statement Fraud. Critical Perspectives on Accounting, 16 (3), 277–298.
19.Spathis, C. (2002). Detecting False Financial Statements Using Published Data: Some Evidence From Greece. Managerial Auditing Journal, 17 (4), 179–191.
20.Sunder, S. (2010), Adverse Effects of Uniform Written Reporting Standards on Accounting Practice, Education and Research. Journal of Accounting and Public Policy, 29 (2), 99–114.
21.Summers, S., Sweeney, J. (1998). Fraudulently Misstated Financial Statements and Insider Trading: An Empirical Analysis. Accounting Review, 73 (1), 131–146.
22.Wójtowicz, P. (2010). Wiarygodność sprawozdań finansowych wobec aktywnego kształtowania wyniku finansowego. Kraków: Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie.
23.Zack, G. (2012). Financial Statement Fraud: Strategies for Detection and Investigation. New Jersey: John Wiley & Sons.