Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2019.3-07
CC BY-SA   Open Access   DOAJ  DOAJ

Lista wydań / Vol. 27, No. 3/2019
Ultrasound elastography in clinical diagnostics and in scientific research on muscles

Autorzy: Katarzyna Rosicka
Department of Anatomy, Biology and Health Sciences, Poznań University of Physical Education, Gorzów Wlkp., Poland

Jarosław Arlet
Department of Physiological Sciences, Poznań University of Physical Education, Gorzów Wlkp., Poland

Dorota Bukowska
Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland

Barbara Mierzejewska-Krzyżowska
Department of Anatomy, Biology and Health Sciences, Poznań University of Physical Education, Gorzów Wlkp., Poland
Słowa kluczowe: diagnostic imaging stiffness skeletal muscles neoplasm
Rok wydania:2019
Liczba stron:8 (75-82)
Cited-by (Crossref) ?:

Abstrakt

Ultrasound elastography is a revolutionary medical imaging technique, enabling a quantitative and qualitative evaluation of tissue stiffness. This paper presents, based on published evidence, a wide range of possibilities for this method in clinical trials and scientific research. The use of dynamic elastography avoids the undesired influence of force applied to the tissue by the elastograph probe on the information content of the obtained image. In clinical practice, elastography is used to identify and examine the pathological condition of soft tissues (including cancer lesions and tendonitis) and to diagnose neuromuscular diseases. It is also used in scientific investigations as a non-invasive method to study the structure of skeletal muscle, including muscle thickness, fiber length and pennation angle using standard ultrasonography mode; it is also possible to obtain information about physical properties such as stiffness. Ultrasound elastography could also be a useful tool for physiotherapists monitoring the rehabilitation process. Based on the results of these studies, advances in elastographic imaging technology, and progress in biomedical diagnostic methods, elastography is expected to become a common method used in clinical diagnostics and scientific research.
Pobierz plik

Plik artykułu

Bibliografia

1.Ariji, Y., Katsumata, A., Hiraiwa ,Y., Izumi, M., Iida, Y., Goto, M., Sakuma, S., Ogi, N., Kurita, K., Ariji, E. (2009). Use of sonographic elastography of the masseter muscles for optimizing massage pressure: a preliminary study. Journal of Oral Rehabilitation, 36, 627–635.
2.Balleyguier, C., Ciolovan, L., Ammari, S., Canale, S., Sethom, S., Rouhbane, R., Vielh, P., Dromain, C. (2012). Breast elastography: The technical process and its applications. Diagnostic and Interventional Imaging, 94, 503–513.
3.Bedossa, P., Bioulac-Sage, P., Callard, P., Chevallier, M., Degott, C., Deugnier, Y., Fabre, M., Reynés, M., Voigt, J., Zafrani, E. (1994). Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology, 20, 15–20.
4.Barr, R.G., Destounis, S., Lackey, L.B., Svensson, W.E., Balleyguier, C., Smith, C. (2012). Evaluation of breast lesions using sonographic elasticity imaging. Journal of ultrasound in medicine, 31, 281–287.
5.Castera, L. (2012). Non-invasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology, 142, 1293–1302.
6.Catheline, S., Thomas, J., Wu, F., Fink, M. (1999). Diffraction field of a low frequency vibrator in soft tissues using transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46, 1013–1019.
7.Choi, J.J., Kang, B.J., Kim, S.H., Lee, J.H., Jeong, S.H., Yim, H.W. (2011). Role of sonographic elastography in the differential diagnosis of axillary lymph nodes in breast cancer. Journal of ultrasound in medicine, 30, 429–436.
8.Drakonaki, E. (2012). Ultrasound elastography for imaging tendons and muscles. Journal of Ultrasound, 12, 214–225.
9.European Association for the Study of the Liver (EASL) (2011). EASL clinical practice guidelines: management of hepatitis C virus infection. Journal of Hepatology, 55, 245–264.
10.Eby, S., Song, P., Chen, S., Chen, Q., Greenleaf, J., An, K.N. (2013). Validation of shear wave elastography in skeletal muscle. Journal of Biomechanics, 46, 2381–2387.
11.Fatemi, M., Greenleaf, J.F. (1998). Ultrasound- stimulated vibroacustic spectrography. Science, 280, 82–85.
12.Fatemi, M., Greenleaf, J.F. (1999). Vibro-acoustography: An imaging modality based on ultrasound- stimulated acoustic emission. Proceedings of the national Academy of Sciences of the USA, 96, 6603–6608.
13.Franchi-Abella, S., Eloe, C., Correas, J.M. (2013). Ultrasound elastography: Advantages, limitations and artefacts of the different techniques from a study on a phantom. Diagnostic and Interventional Imaging, 94, 497–501.
14.Fraquelli, M., Rigamonti, C., Casazza, G., Conte, D., Donato, M.F., Ronchi, G., Colombo, M. (2007). Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut, 56, 968–973.
15.Frulio, N., Trilluad, H. (2013). Ultrasound elastography in liver. Diagnostic and Interventional Imaging, 94, 515–534.
16.Gao, J., Chen, J., O’Dell, M., Li, P.C., He, W., Du, L.J., Rubin, J., Weitzel, W., Min, R. (2018). Ultrasound strain imaging to assess the biceps brachii muscle in chronic poststroke spasticity. Journal of Ultrasound in Medicine, 37, 2043–2052.
17.Gennisson, J.L., Deffieux, T., Fink, M., Tanter, M. (2013). Ultrasound elastography: Principles and techniques. Diagnostic and Interventional Imaging, 94, 487–495.
18.Grenier, N., Gennisson, J.L., Cornelis, Y., Le Bras, Y., Couzi, L. (2013). Renal ultrasound elastography. Diagnostic and Interventional Imaging, 94, 545–550.
19.Karlas, T., Pfrepper, C., Wiegand, J., Wittekind, C., Neuschulz, M., Mossner, J., Berg, T., Tröltzsch, M., Keim, V. (2011). Acoustic radiation force impulse imaging (ARFI) for non-invasive detection of liver fibrosis: examination standards and evaluation of interlobe differences in healthy subjects and chronic liver disease. Scandinavian Journal of Gastroenterology, 46, 1458–1467.
20.Kelly, J.P., Koppenhaver, S.L., Michener, L.A., Proulx, L., Bisagni, F., Cleland, J.A. (2018). Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. Journal of Electromyography and Kinesiology, 38, 73–80.
21.Nightingale, K.R., Palmeri, M.L., Nightingale, R.W., Trahey, G.E. (2001). On the feasibility of remote palpation using acoustic radiation force. The Journal of the Acoustical Society of America, 110, 625–634.
22.Ophir, J., Alam, S.K., Garra, B., Kallel, F., Konofagou, E., Krouskop, T. (1999). Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues. Proceedings of the Institute of Mechanical Engeineers, 213, 203–233.
23.Park, G.Y., Kwon, D.R., Kwon, D.G. (2018). Shear wave sonoelastography in infants with congenital muscular torticollis. Medicine (Baltimore), 97. DOI: 10.1097/MD.0000000000009818.
24.Rzymski, P., Kubasik, M., Opala, T. (2011). Use of shear wave sonoelastography in capsular contracture before and after secondary surgery: report of two cases. Journal of Plastic, Reconstructive and Aesthetic Surgery, 64, 309–312.
25.Saravzyan, A.P., Rudenko, O., Swanson, S., Fowlkes, J., Emelianov, S. (1998). Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound in Medicine and Biology, 24, 1419-1435.
26.Szabo, T.L. (2004). Diagnostic ultrasound imaging inside out. Elsevier Academic Press, 277–283.
27.Takashima, M., Arai, Y., Kawamura, A., Hayashi, T., Takagi, R. (2017). Quantitative evaluation of masseter muscle stiffness in patients with temporomandibular disorders using shear wave elastography. Journal of Prosthodontic Research, 61, 432–438.
28.Wells, P.N.T., Liang, H.D. (2011). Medical ultrasound: imaging of soft tissue strain and elasticity. Journal of the Royal Society Interface, 8, 1521–1549.