Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2022.2-06
CC BY-SA   Open Access   DOAJ  DOAJ

Lista wydań / Vol. 38, No. 2/2022
Cold Water Immersion as a Method Supporting Post-Exercise Recovery

Autorzy: Mateusz Kowalski ORCID
Department of Functional Diagnostics and Physical Medicine; Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland

Anna Lubkowska ORCID
Department of Functional Diagnostics and Physical Medicine; Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
Słowa kluczowe: exercise recovery cold water immersion lactate concentration
Data publikacji całości:2022
Liczba stron:10 (61-70)
Cited-by (Crossref) ?:

Abstrakt

The aim of the study was to assess the effect of cold water immersion on changes in blood lactate concentration during post-exercise recovery in swimmers subjected to2-minute exercise test (front crawl swimming movements) using a VASA Swim Ergometer, with the maximum arm speed movements, as during the freestyle technique. The study covered 11 professional swimmers of the MKP Szczecin club, tested twice with a two-week interval. Each participant performed an exercise test twice, once with a passive recovery period, and the second time with cold water immersion after exercise, as a method potentially supporting the post-exercise recovery process. Each time before the test, immediately after and at 3, 6 and 9 minutes after exercise, the concentration of lactate in the capillary blood was measured. Statistical analysis of the obtained results showed that cold water immersion applied immediately after exercise resulted in a faster reduction of lactate concentration. The conducted research confirms that cold water immersion used in post-exercise recovery may be an effective method of restoring optimal physical fitness as part of the training process.
Pobierz plik

Plik artykułu

Bibliografia

1.Adamczyk, J.G., Krasowska, I., Boguszewski, D., Reaburn, P. (2016). The use of thermal imaging to assess the effectiveness of ice massage and cold-water immersion as methods for supporting post-exercise recovery. Journal of thermal biology, 60, 20–25. DOI:10.1016/j.jtherbio.2016.05.006
2.Aguiar, P.F., Magalhães, S.M., Fonseca, I.A., da Costa Santos, V.B., de Matos, M.A., Peixoto, M.F., Nakamura, F.Y., Crandall, C., Araújo, H.N., Silveira, L.R., Rocha-Vieira, E., de Castro Magalhães, F., Amorim, F.T. (2016). Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses but enhances mitochondrial markers. Cell stress & chaperones, 21 (5), 793–804.bDOI:10.1007/s12192-016-0704-6
3.Algafly, A.A., George, K.P. (2007). The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. British journal of sports medicine, 41 (6), 365–369. DOI:10.1136/bjsm.2006.031237.
4.Astorino, T.A., DeRevere, J.L., Anderson, T., Kellogg, E., Holstrom, P., Ring, S., Ghaseb, N. (2019). Blood Lactate Concentration Is Not Related to the Increase in Cardiorespiratory Fitness Induced by High Intensity Interval Training. International journal of environmental research and public health, 16 (16), 2845. DOI:10.3390/ijerph16162845.
5.Bleakley, C., McDonough, S., Gardner, E., Baxter, G.D., Hopkins, J.T., Davison, G. W. (2012). Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. The Cochrane database of systematic reviews, 2012 (2), CD008262. DOI:10.1002/14651858.CD008262.pub2.
6.Cairns S.P. (2006). Lactic acid and exercise performance: culprit or friend? Sports medicine (Auckland, N.Z.), 36 (4), 279–291. DOI:10.2165/00007256-200636040-00001.
7.Earp, J.E., Hatfield, D.L., Sherman, A., Lee, E C., Kraemer, W.J. (2019). Cold-water immersion blunts and delays increases in circulating testosterone and cytokines post-resistance exercise. European journal of applied physiology, 119 (8), 1901–1907. DOI:10.1007/s00421-019-04178-7.
8.Elias, G.P., Varley, M.C., Wyckelsma, V.L., McKenna, M.J., Minahan, C.L., Aughey, R.J. (2012). Effects of water immersion on posttraining recovery in Australian footballers. International journal of sports physiology and performance, 7 (4), 357–366. DOI:10.1123/ijspp.7.4.357.
9.Guilherme L., Guglielmo G., Denadai B. (2000). Assessment of Anaerobic Power of Swimmers: The Correlation of Laboratory Tests on an Arm Ergometer with Field Tests in a Swimming Pool. Journal of Strength and Conditioning Research,14 (4), 395–398. DOI:10.3390/sports9050055.
10.Ihsan, M., Watson, G., Abbiss, C.R. (2016). What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports medicine (Auckland, N.Z.), 46 (8), 1095–1109. DOI:10.1007/s40279-016-0483-3.
11.Jones, A.M., Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports medicine (Auckland, N.Z.), 29 (6), 373–386. DOI:10.2165/00007256-200029060-00001.
12.Klich, S., Krymski, I., Michalik, K., Kawczyński, A. (2018). Effect of short-term cold-water immersion on muscle pain sensitivity in elite track cyclists. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 32, 42–47. DOI: 10.1016/j.ptsp.2018.04.022.
13.Klusiewicz A., Zdanowicz R. (2002). Anaerobic threshold and the state of maximum lactate balance- practical considerations. Sport wyczynowy, 1-2/445–446.
14.Knight, K., Brucker, J.B., Stoneman, P., Rubley, M.D. (2000). Muscle Injury Management with Cryotherapy. Athletic Therapy Today, 5, 26–30.
15.Leeder, J., Gissane, C., van Someren, K., Gregson, W., Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: a meta-analysis. British journal of sports medicine, 46 (4), 233–240. DOI:10.1136/bjsports-2011-090061.
16.Maté-Muñoz, J.L., Lougedo, J.H., Barba, M., García-Fernández, P., Garnacho-Castaño, M.V., Domínguez, R. (2017). Muscular fatigue in response to different modalities of CrossFit sessions. PloS one, 12 (7), e0181855. DOI:10.1371/journal.pone.0181855.
17.Kevin K. Mccully, Bertrand Authier, Jennifer Olive, and Bernard J. Clark. Muscle Fatigue: The Role of Metabolism. Canadian Journal of Applied Physiology, 27 (1), 70–82. DOI:10.1139/h02-005.
18.Peiffer, J.J., Abbiss, C.R., Watson, G., Nosaka, K., Laursen, P.B. (2010). Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. British journal of sports medicine, 44 (6), 461–465. DOI:10.1136/bjsm.2008.048173.
19.Poppendieck, W., Faude, O., Wegmann, M., Meyer, T. (2013). Cooling and performance recovery of trained athletes: a meta-analytical review. International journal of sports physiology and performance, 8 (3), 227–242. DOI:10.1123/ijspp.8.3.227.
20.Ražanskas, P., Verikas, A., Olsson, C., Viberg, P.A. (2015). Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise. Sensors (Basel, Switzerland), 15m(8), 20480–20500. DOI:10.3390/s150820480.
21.Roberts, L.A., Raastad, T., Markworth, J.F., Figueiredo, V.C., Egner, I.M., Shield, A., Cameron-Smith, D., Coombes, J.S., Peake, J.M. (2015). Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. The Journal of physiology, 593 (18), 4285–4301. DOI:10.1113/JP270570.
22.Rodacki, A.L., Fowler, N.E., Bennett, S.J. (2002). Vertical jump coordination: fatigue effects. Medicine and science in sports and exercise, 34 (1), 105–116. DOI:10.1097/00005768-200201000-00017.
23.Vaile, J., O'Hagan, C., Stefanovic, B., Walker, M., Gill, N., Askew, C.D. (2011). Effect of cold water immersion on repeated cycling performance and limb blood flow. British journal of sports medicine, 45 (10), 825–829. DOI:10.1136/bjsm.2009.067272.
24.Von Duvillard, S.P. Exercise lactate levels: simulation and reality of aerobic and anaerobic metabolism. Eur J Appl Physiol, 86, 3–5 (2001). DOI:10.1007/s004210100515.
25.Vieira, A., Siqueira, A.F., Ferreira-Junior, J.B., do Carmo, J., Durigan, J.L., Blazevich, A., Bottaro, M. (2016). The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage. International journal of sports medicine, 37 (12), 937–943. DOI:10.1055/s-0042-111438.
26.White, G., Caterini, J. E. (2017). Cold water immersion mechanisms for recovery following exercise: cellular stress and inflammation require closer examination. The Journal of physiology, 595 (3), 631–632. DOI:10.1113/JP273659.
27.White, G.E., Wells, G.D. (2013). Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extreme physiology & medicine, 2 (1), 26. DOI:10.1186/2046-7648-2-26.
28.Yeung, S.S., Ting, K.H., Hon, M., Fung, N.Y., Choi, M.M., Cheng, J.C., Yeung, E.W. (2016). Effects of Cold Water Immersion on Muscle Oxygenation During Repeated Bouts of Fatiguing Exercise: A Randomized Controlled Study. Medicine, 95 (1), e2455. DOI:10.1097/MD.0000000000002455.
29.Złotkowska R., Skiba M., Mroczek A., Bilewicz- Wyrozumska T., Król K., Lar K., Zbrojkiewicz E. (2015). Negative effects of physical activity and sports training. Hygeia Public Health, 50 (1):41–46.