Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2021.3-09
CC BY-SA   Open Access   DOAJ  DOAJ

Issue archive / Vol. 35, No. 3/2021
Newer Perspectives in Lactate Threshold Estimation for Endurance Sports – A Mini-Review

Authors: Anup Krishnan ORCID
Military Hospital, Dehradun, India

Chandra Sekara Guru ORCID
Department of Sports Medicine, Armed Forces Medical College, Pune, India

Arumugam Sivaraman ORCID
Department of Arthroscopy and Sports Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India

Thiagarajan Alwar ORCID
Department of Arthroscopy and Sports Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, India

Deep Sharma ORCID
Department of Sports Medicine, Armed Forces Medical College, Pune, India

Piyush Angrish
Director, Planning & Training, Office of the DGAFMS, New Delhi, India
Keywords: anaerobic threshold physical endurance athletic performance exercise testing lactate threshold
Data publikacji całości:2021
Page range:18 (99-116)
Cited-by (Crossref) ?:

Abstract

Lactate threshold (LT) estimation in endurance sports continues to be a widely controversial field amongst sports scientists and students despite beyond 50 years of research. With the advent of technology and superior sensors, LT research has ventured into newer fields involving wearables and artificial intelligence. Still, there is a felt need to understand the focused areas of LT research and to guide the students, sports scientists and coaches. The main aim of this mini-review is to identify research categories in a descriptive manner and to synthesize broad themes for future research from latest literature. A comprehensive electronic search in three databases was performed including only original free full text research articles conducted in athletes and heathy subjects, published in English between 2016 and 2020 following PRISMA guidelines. Out of screened 466 articles, 14 articles were finally shortlisted as per inclusion criteria and the findings were summarized. Five research categories were identified and reviewed. To conclude, there is a need for consensus in Graded Exercise test protocols used, LT concepts validity for specific sports and the application of valid, reliable noninvasive LT estimation methods in endurance sports. Synthesized broad themes would help guide sports scientists, students and researchers for future research.
Download file

Article file

Bibliography

1.Amann, M., Subudhi, A.W., Foster, C. (2006). Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scandinavian Journal of Medicine & Science in Sports, 16 (1), 27–34. DOI: 10.1111/j.1600-0838.2004.00424.x.
2.Baron, B., Noakes, T.D., Dekerle, J., Moullan, F., Robin, S., Matran, R., Pelayo, P. (2008). Why does exercise terminate at the maximal lactate steady state intensity? British Journal of Sports Medicine, 42 (10), 828–833. DOI: 10.1136/bjsm.2007.040444.
3.Beneke, R., Leithäuser, R. M., Ochentel, O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 6 (1), 8–24. DOI: 10.1123/ijspp.6.1.8.
4.Bentley, D.J., McNaughton, L.R. (2003). Comparison of W(peak), VO2(peak) and the ventilation threshold from two different incremental exercise tests: Relationship to endurance performance. Journal of Science and Medicine in Sport, 6 (4), 422–435. DOI: 10.1016/ s1440-2440(03)80268-2.
5.Bentley, David J., Newell, J., Bishop, D. (2007). Incremental exercise test design and analysis. Sports Medicine, 37 (7), 575–586. DOI: 10.2165/00007256-200737070-00002.
6.Borges, N.R., Driller, M.W. (2016). Wearable Lactate Threshold Predicting Device is Valid and Reliable in Runners. Journal of Strength and Conditioning Research, 30 (8), 2212–2218. DOI: 10.1519/JSC.0000000000001307.
7.Brooks, G.A. (2000). Intra-and extra-cellular lactate shuttles. Medicine & Science in Sports & Exercise, 32 (4), 790–799. DOI: 10.1097/00005768-200004000-00011.
8.Brooks, G.A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27 (4), 757–785. DOI: 10.1016/j.cmet.2018.03.008.
9.Bunc, V., Heller, J. (1989). Non-invasive determination of the “anaerobic threshold” using heart rate kinetics. Casopis Lekaru Ceskych, 128 (4), 117–120.
10.Cambri, L.T., Novelli, F.I., Sales, M.M., de Jesus Lima de Sousa, L.C., Queiroz, M.G., Dias, A.R.L., dos Santos, K.M., Arsa, G. (2016). Heart rate inflection point estimates the anaerobic threshold in overweight and obese young adults. Sport Sciences for Health, 12 (3), 397–405. DOI: 10.1007/s11332-016-0304-y.
11.Candotti, C.T., Loss, J.F., Melo, M. de O., La Torre, M., Pasini, M., Dutra, L.A., de Oliveira, J.L.N., de Oliveira, L.P. (2008). Comparing the lactate and EMG thresholds of recreational cyclists during incremental pedaling exercise. Canadian Journal of Physiology and Pharmacology, 86 (5), 272–278. DOI: 10.1139/y08-020.
12.Capellá, I.L., Benito Peinado, P.J., Barriopedro Moro, M.I., Revenga, J.B., Esteves, N.K., Calderón Montero, F.J. (2018). Determining the ventilatory inter-threshold area in individuals with different endurance capacities. Apunts. Medicina de l’Esport, 53 (199), 91–97. DOI: 10.1016/j.apunts.2017.11.003.
13.Conconi, F., Ferrari, M., Ziglio, P.G., Droghetti, P., Codeca, L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 52 (4), 869–873. DOI: 10.1152/ jappl.1982.52.4.869.
14.Conconi, F., Grazzi, G., Casoni, I., Guglielmini, C., Borsetto, C., Ballarin, E., Mazzoni, G., Patracchini, M., Manfredini, F. (1996). The Conconi test: Methodology after 12 years of application. International Journal of Sports Medicine, 17 (7), 509–519. DOI: 10.1055/s-2007-972887.
15.Etxegarai, U., Portillo, E., Irazusta, J., Arriandiaga, A., Cabanes, I. (2018). Estimation of lactate threshold with machine learning techniques in recreational runners. Applied Soft Computing, 63, 181–196. DOI: 10.1016/j.asoc.2017.11.036.
16.Etxegarai, U., Portillo, E., Irazusta, J., Koefoed, L., Kasabov, N. (2019). A heuristic approach for lactate threshold estimation for training decision-making: An accessible and easy to use solution for recreational runners. European Journal of Operational Research. DOI: 10.1016/j.ejor.2019.08.023.
17.Faude, O., Kindermann, W., Meyer, T. (2009). Lactate Threshold Concepts. Sports Medicine, 39 (6), 469–490. DOI: 10.2165/ 00007256-200939060-00003.
18.Fernandes, T.L., Nunes Rdos, S., Abad, C.C., Silva, A.C., Souza, L.S., Silva, P.R., Albuquerque, C., Irigoyen, M.C., Hernandez, A.J. (2015). Post-analysis methods for lactate threshold depend on training intensity and aerobic capacity in runners. An experimental laboratory study. Sao Paulo Medical Journal = Revista Paulista De Medicina, 134 (3), 193–198. DOI: 10.1590/1516-3180.2014.8921512.
19.Foxdal, P., Sjödin, B., Sjödin, A., Ostman, B. (1994). The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity. Dependency of analyzed blood media in combination with different designs of the exercise test. International Journal of Sports Medicine, 15 (2), 89–95. DOI: 10.1055/s-2007-1021026.
20.Galán-Rioja, MÁ., González-Mohíno, F., Poole, D. C., González-Ravé, J.M. (2020). Relative Proximity of Critical Power and Metabolic/ Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Medicine (Auckland, N.Z.), 50 (10), 1771–1783. DOI: 10.1007/s40279-020-01314-8.
21.Gladden, L.B. (2008). 200th anniversary of lactate research in muscle. Exercise and Sport Sciences Reviews, 36 (3), 109–115. DOI: 10.1097/JES.0b013e31817c0038.
22.Hall, M.M., Rajasekaran, S., Thomsen, T.W., Peterson, A.R. (2016). Lactate: Friend or Foe. PM&R, 8 (3S), S8–S15. DOI: 10.1016/j.pmrj.2015.10.018.
23.Heuberger, J.A.A.C., Gal, P., Stuurman, F E., Keizer, W.A.S. de M., Miranda, Y.M., Cohen, A.F. (2018). Repeatability and predictive value of lactate threshold concepts in endurance sports. PLOS ONE, 13 (11), e0206846. DOI: 10.1371/journal.pone.0206846.
24.Jamnick, N.A., Botella, J., Pyne, D.B., Bishop, D.J. (2018). Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2 peak. PloS One, 13 (7), e0199794. DOI: 10.1371/journal.pone.0199794.
25.Joubert, D.P., Guerra, N.A., Jones, E.J., Knowles, E.G., Piper, A.D. (2020). Ground Contact Time Imbalances Strongly Related to Impaired Running Economy. International Journal of Exercise Science, 13 (4), 427–437.
26.Kompanje, E.J.O., Jansen, T.C., van der Hoven, B., Bakker, J. (2007). The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843. Intensive Care Medicine, 33 (11), 1967–1971. DOI:.10.1007/ s00134-007-0788-7.
27.Kraemer, W.J., Fleck, S.J., Deschenes, M.R. (2011). Exercise physiology: Integrating theory and application. Lippincott Williams & Wilkins.
28.McArdle, W.D., Katch, F.I., Katch, V.L. (2017). Exercise physiology: Nutrition, energy, and human performance (7th ed.). Lippincott Williams & Wilkins.
29.Meyer, T., Faude, O., Gabriel, H., Kindermann, W. (2000). Ventilatory threshold and individual anaerobic threshold are reliable prescriptors for intensity of cycling training. Med Sci Sports Exerc, 32 (Suppl. 5), S171.
30.Meyer, T., Gabriel, H.H.W., Auracher, M., Scharhag, J., Kindermann, W. (2003). Metabolic profile of 4 h cycling in the field with varying amounts of carbohydrate supply. European Journal of Applied Physiology, 88 (4–5), 431–437. DOI: 10.1007/s00421-002-0712-3.
31.Meyer, T., Lucia, A., Earnest, C.P., Kindermann, W. (2005). A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters-theory and application. International Journal of Sports Medicine, 26 (S 1), S38–S48. DOI: 10.1055/s-2004-830514.
32.Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta- analyses: The PRISMA statement. BMJ (Clinical Research Ed.), 339, b2535. DOI: 10.1136/bmj.b2535.
33.Needham, D.M., Carnis, M. (1971). The biochemistry of muscular contraction in its historical development. Machina Carnis, 559–566.
34.Onor, M., Gufoni, S., Lomonaco, T., Ghimenti, S., Salvo, P., Sorrentino, F., Bramanti, E. (2017). Potentiometric sensor for non invasive lactate determination in human sweat. Analytica Chimica Acta, 989, 80–87. DOI: 10.1016/j.aca.2017.07.050.
35.Otto, A.-K., Reer, R., Holtfreter, B., Riepenhof, H., Schröder, J. (2019). Physiological responses at the anaerobic threshold and at peak performance during arm crank ergometer diagnostics compared to wheelchair propulsion on a treadmill in elite wheelchair basketball players. Sports Orthopaedics and Traumatology, 35 (1), 49–55. DOI: 10.1016/j.orthtr.2019.01.009.
36.Pallarés, J.G., Morán-Navarro, R., Ortega, J.F., Fernández-Elías, V.E., Mora-Rodriguez, R. (2016). Validity and Reliability of Ventilatory and Blood Lactate Thresholds in Well-Trained Cyclists. PloS One, 11 (9), e0163389. DOI: 10.1371/journal.pone.0163389.
37.Pelarigo, J.G., Greco, C.C., Denadai, B.S., Fernandes, R.J., Vilas-Boas, J.P., Pendergast, D.R. (2016). Do 5% changes around maximal lactate steady state lead to swimming biophysical modifications? Human Movement Science, 49, 258–266. DOI: 10.1016/j.humov.2016.07.009.
38.Piucco, T., Diefenthaeler, F., Prosser, A., Bini, R. (2020). Validity of different EMG analysis methods to identify aerobic and anaerobic thresholds in speed skaters. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 52, 102425. DOI: 10.1016/j.jelekin.2020.102425.
39.Poole, D.C., Rossiter, H.B., Brooks, G.A., Gladden, L.B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599 (3), 737–767. DOI: 10.1113/JP279963.
40.Rogatzki, M.J., Ferguson, B.S., Goodwin, M.L., Gladden, L.B. (2015). Lactate is always the end product of glycolysis. Frontiers in Neuroscience, 9, 22. DOI: 10.3389/fnins.2015.00022.
41.Sarma, A.S. (2018). Lactate Threshold Training. International Journal of Physiology, Nutrition and Physical Education 2018; 3 (1): 196-198.
42.Scheer, V., Vieluf, S., Janssen, T.I., Heitkamp, H.-C. (2019). Predicting Competition Performance in Short Trail Running Races with Lactate Thresholds. Journal of Human Kinetics, 69, 159–167. DOI: 10.2478/hukin-2019-0092.
43.Stegmann, H., Kindermann, W., Schnabel, A. (1981). Lactate kinetics and individual anaerobic threshold. International Journal of Sports Medicine, 2 (03), 160–165.
44.Sun, F., Yi, C., Li, W., Li, Y. (2017). A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing. Computers in Industry, 92–93, 1–11. DOI: 10.1016/j.compind.2017.06.004.
45.Wasserman, K., McIlroy, M.B. (1964). Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. The American Journal of Cardiology, 14 (6), 844–852.