Acta Biologica

Wcześniej: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Acta Biologica

ISSN: 2450-8330     DOI: 10.18276/ab.2017.24-01
CC BY-SA   Open Access 

Lista wydań / No. 24
Assessment of genetic variability in common whitefish from the catchment area of the Oder river using microsatellite markers
(Ocena zmienności genetycznej siei ze zlewni Odry z wykorzystaniem markerów mikrosatelitarnych)

Rok wydania:2017
Liczba stron:9 (5-13)
Słowa kluczowe: Coregonus maraena SSR genetic variability
Autorzy: Magdalena Achrem
University of Szczecin, Faculty of Biology, Department of Cell Biology, Molecular Biology and Biotechnology Center

Lidia Skuza
University of Szczecin, Faculty of Biology, Department of Cell Biology, Molecular Biology and Biotechnology Center

Lucyna Kirczuk
University of Szczecin, Faculty of Biology, Department of General Zoology

Józef Domagała
University of Szczecin, Faculty of Biology, Department of General Zoology

Małgorzata Pilecka-Rapacz
University of Szczecin, Faculty of Biology, Department of General Zoology

Robert Czerniawski
University of Szczecin, Faculty of Biology, Department of General Zoology

Abstrakt

Common whitefish (Coregonus maraena) in Poland belongs to the endangered species. The degradation of the environment causes common whitefish to lose its natural reproduction sites. The natural genetic structure of whitefish has been compromised by anthropogenetic activities involving eutrophication, river regulation, the introduction of non-native species and as well as excessive exploitation of the species. The genetic variability of common whitefish (Coregonus maraena) from 2 sites: Pomeranian Bay and the lower Oder river, was assessed using microsatellite markers. A total of 45 caught individuals were analysed (26 from Pomeranian Bay and 19 from the Oder river). Polymorphism at nine loci, Str60INRA, Str73INRA, Strutta 12, OmyFgt1TUF, Str85INRA, Str591INRA, Ssa85, Ssa197, T3-13 was assessed. The results indicated that all the investigated populations showed a high level of genetic variability. The level of genetic variability was determined using the FST parameter and was high investigated populations (0.215). Microsatellite analysis demonstrated a higher observed heterozygosity as compared with the expected heterozygosity in all the investigated populations. The FIS coefficient values below zero in all the investigated populations of common whitefish indicate the excess of heterozygotes. The high number of heterozygotes may be related with a more intense influx of genes from outside of the local population. The study demonstrated that microsatellite markers (SSR) are very useful in the assessment of the genetic variability of common whitefish (Coregonus maraena). Our results characterize the selected populations of whitefish and may be useful for further research on this endangered species.
Pobierz plik

Plik artykułu

Bibliografia

1.Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E. (1993). Optimising parental selection for genetic linkage maps. Genome, 36, 181–186.
2.Bernatchez, L., Chouinard, A., Guoqing, L. (1999). Integrating molecular genetics and ecology in studies of adaptive radiation: whitefish, Coregonus sp., as a case study. Biological Journal of the Linnean Society, 68, 173–194.
3.Dierking, J., Phelps, L., Præbel, K., Ramm, G., Prigge, E., Borcherding, J., Brunke, M., Eizaguirre, C.
4.(2014). Anthropogenic hybridization between endangered migratory and commercially harvested stationary whitefish taxa (Coregonus spp.). Evolutionary Applications, 7 (9), 1068–1083.
5.Douglas, M.R., Brunner, P.C., Bernatchez, L. (1999). Do assemblages of Coregonus (Teleostei: Salmoniformes) in the central Alpine region of Europe represent species flocks? Molecular Ecology, 8, 589–603.
6.Estoup, A., Presa, P., Krieg, F., Vaiman, D., Guyomard, R. (1993). (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (Brown trout). Heredity, 71, 488–496.
7.Fopp-Bayat, D., Wiśniewska, A. (2010). Analiza genetyczna siei (Coregonus lavaretus) z jeziora Łebsko – zastosowanie analizy mikrosatelitarnego DNA. In: Z. Zakęś, K. Demska-Zakęś, A. Kowalska (eds.), Rozród, podchów, profilaktyka ryb rzadkich i chronionych oraz innych gatunków (pp. 65–72). Olsztyn: Wydawnictwo IRS.
8.Frankel, O.H., Soul, M. (1981). Conservation and Evolution. Cambridge University Press.
9.Frankham, R. (1995). Effective population size/ adult population size ratios in wildlife: a review. Genetics
10.Research, 66, 95–107.
11.Fraser, D. 2008. How well can captive breeding programs conserve biodivesity? A review of salmonids.
12.Evolutionary Applications, 2, 1–52.
13.Hansen, M.M., Fraser, D.J., Als, T.D., Mensberg, K.-L.D. (2008). Reproductive isolation, evolutionary
14.distinctiveness and setting conservation priorities: The case of European lake whitefish and the endangered
15.North Sea houting (Coregonus spp.). BMC Evolutionary Biology, 8, 137.
16.Heese, T., Lampart-Kałużnicka, M., Arciszewski, M., Modzelewski, T. (1999). Anadromous whitefish
17.(Coregonus lavaretus f. lavaretus) from Łebsko Lake. Słupsk, Proc. XVII Meeting of PTZool.
18.Kempter, J., Kohlmann, K., Panicz, R., Sadowski, J., Keszka, S. (2010). Genetic variability in European
19.populations of Coregonus lavaretus (L.): an assessment based on mitochondrial ND-1 gene haplotypes.
20.Archives of Polish Fisheries, 18, 197–204.
21.Kohlmann, K., Kempter, J., Kersten, P., Sadowski, J. (2007). Haplotype variability at the mitochondrial
22.ND-1 gene region of Coregonus lavaretus from polish lakes. Advances in Limnology, 60, 47–57.
23.Lu, G., Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric whitefish
24.ecotypes (Coregonus sp.): support for the ecological speciation hypothesis. Evolution, 53, 157–
25.171.
26.Mccairns, R.J.S., Kuparinen, A., Panda, B., Jokikokko, E., Merila, J. (2012). Effective size and genetic
27.composition of two exploited, migratory whitefish (Coregonus lavaretus lavaretus) populations. Conservation
28.Genetics, 6 (13), 1409–1520.
29.Nei, M., Tajima, F., Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. Journal
30.of Molecular Evolution, 19, 153–170.
31.O’reilly, P.T., Hamilton, L.C., Mcconnell, S.K., Wright, J.M. (1996). Rapid analysis of genetic variation in
32.Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites.
33.Canadian Journal of Fisheries and Aquatic Sciences, 53, 2292–2298.
34.Østbye, K., Amundsen, A., Bernatchez, A., Klemetsen, R., Knudsen, R., Kristoffersen, R., Næsje, F., Hindar,
35.K. (2004). Parallel evolution of ecomorphological traits in the European whitefish Coregonus
36.lavaretus (L.) species complex during postglacial times. Molecular Ecology, 15, 3983–4001.
37.Presa, P., Guyomard, R. (1996). Conservation of microsatellites in three species of salmonids. Journal
38.of Fish Biology, 49, 1326–1329.
39.Säis, M., Rönn, J., Aho, T., Björklund, M., Pasanen, P., Koljonen, M.L. (2008). Genetic differentiation
40.among European whitefish ecotypes based on microsatellite data. Hereditas, 2 (145), 69–83.
41.Shannon, C.E., Weaver, W. (1949). The Mathematical Theory of Communication. Urbana, University
42.of Illinois Press.
43.Slettan, A. (1995). GenBank Acc. no. Z49134.
44.Slettan, A., Olsaker, I., Lie, Ř. (1995). Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85,
45.SSOSL311, SSOSL417 loci. Animal Genetics, 26, 281–282.
46.Szczerbowski, J.A. (2000). Whitefish (Coregonus lavaretus L.). In: M. Brylińska (ed.), Freshwater fish
47.of Poland (pp. 381–386). Warszawa: Wydawnictwo Naukowe PWN.
48.Wang, C., Yu, X., Tong, J. (2007). Microsatellite diversity and population genetic structure of redfin culter
49.(Culter erythropterus) in fragmented lakes of the Yangtze River. Hydrobiology, 1 (586), 321–329.
50.Wilkonska, H., Zuromska, H. (1982). Effect of environmental factors and egg quality on the mortality
51.of spawn in Coregonus albula (L.) and Coregonus lavaretus (L.). Polskie Archivum Hydrobiologii,
52.1 (29), 123–157.
53.Winkler, K.A., Weiss, S. (2008). Eighteen new tetranucleotide microsatellite DNA markers for Coregonus
54.lavaretus cloned from an alpine lake population. Molecular Ecology Resources, 5 (8), 1055–1058.
55.Wiśniewska, A.M., Pawelczyk, K., Sobocki, M. (2010). Systemy informacji przestrzennej – możliwość
56.zastosowania w działaniach związanych z ochroną ichtiofauny. Biuletyn Naukowy UWM, 31, 5–10.
57.Witkowski, A., Kotusz, J., Przybylski, M. (2009). Stopie zagrożenia słodkowodnej ichtiofauny Polski:
58.Czerwona lista minogów i ryb – stan 2009 The degree of threat to the freshwater ichthyofauna of
59.Poland: Red list of fishes and lampreys–situation in 2009, Chrońmy Przyrodę Ojczystą, 1 (65), 33–52.
60.Zarraonaindia, I., Pardo, M.A., Iriondo, M., Manzano, C., Estonba, A. (2009). Microsatellite variability in
61.European anchovy (Engraulis encrasicolus) calls for further investigation of its genetic structure and
62.biogeography. ICES Journal of Marine Science, 10 (66), 2176–2182.