Acta Biologica

Wcześniej: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Acta Biologica

ISSN: 2450-8330     eISSN: 2353-3013    OAI    DOI: 10.18276/ab.2020.27-09
CC BY-SA   Open Access   DOAJ

Lista wydań / No. 27
MicroRNAs as new immunity regulators in viral and bacterial infections
(Cząsteczki mikroRNA jako nowe regulatory odporności w infekcjach wirusowych i bakteryjnych)

Autorzy: Martyna Szumna
Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland

Beata Hukowska-Szematowicz ORCID
Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
Słowa kluczowe: mikroRNA odporność wirusy bakterie
Data publikacji całości:2020
Liczba stron:16 (93-108)
Cited-by (Crossref) ?:

Abstrakt

MikroRNA (miRNA), małe, konserwatywne 22–25 nukleotydowe cząsteczki RNA wy- stępujące powszechnie w komórkach żywych organizmów. Jako cząsteczki regulatorowe mają ogromny potencjał biologiczny i mogą wypływać na wiele procesów komórkowych. W kontekście immunologii nieoceniona jest rola miRNA jako nowych regulatorów odporno-ści. MiRNA regulują zjawiska odpornościowe na wielu poziomach. Począwszy od wpływu na procesy dojrzewania, proliferacji oraz różnicowania komórek układu odpornościowego, przez regulację wydzielania ich produktów, po regulację wewnątrzkomórkowych szlaków sygnalizacyjnych. Na wszystkich tych polach miRNA może odgrywać rolę zarówno induktora, jak i inhibitora, odpowiednio zwiększając nasilenie lub wygaszając regulowane przez siebie procesy odpornościowe. W przyszłości dzięki właściwie pokierowanej ekspresji miRNA w komórkach układu odpornościowego możliwe będzie regulowanie przebiegu odpowiedzi immunologicznej gospodarza w odpowiedzi na patogen.
Pobierz plik

Plik artykułu

Bibliografia

1.Acuña, S.M., Floeter-Winter, L.M., Muxel, S.M. (2020). MicroRNAs: Biological Regulators in PathogenHost Interactions. Cells, 9 (1), 113. DOI: 10.3390/cells9010113.
2.Ahmed, W., Zheng, K., Liu, Z.-F. (2016). Small Non-coding RNAs: New Insights in Modulation of Host Immune Response by Interacellular Bacterial Pathogens. Front. Immunol., 7, 431.
3.Annon (2020a). Retrieved from: http://www.mirnabase.org.
4.Annon (2020b). Retrieved from: https://talk.ictvonline.org/taxonomy.
5.Ardekani, A.M., Naeini, M.M. (2010). The Role of MicroRNAs in Human Diseases. Avicenna J. Med.
6.Biotechnol., 2 (4), 161–179.
7.Badalzadeh, M., Mazinani, M., Pourpak, Z., Heidarnazhad, H., Mortaz, E., Moin, M., Farazmand, A.
8.(2019). In Vitro Analysis of Nine MicroRNAs in CD8+ T Cells of Asthmatic Patients and the Effects of Two FDA-approved Drugs. Iran J. Allergy Asthma Immunol., 18 (4), 358–368. DOI: 10.18502/ijaai.v18i4.1414.
9.Balasubramaniam, M., Pandhare, J., Dash, Ch. (2018). Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses, 10 (3), 110. DOI: 10.3390/v10030110.
10.Barbu, M.G., Condrat, C.E., Thompson, D.C., Bugnar, O.L., Cretoiu, D., Toader, O.D., Suciu, N., Voinea, S.C. (2020). MicroRNA involvement in signaling pathways during viral infection. Front. Cell Dev.
11.Biol., 8, 143. DOI: 10.3389/fcell.2020.00143.
12.Bartel, D.P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism and Function. Cell, 116, 281–297. DOI: 10.1016/s0092-8674(04)00045-5.
13.Busse, H.J., Whitman, W., Goodfellow, M., Kampfer, M., Trujillo, M., Ludwig, M., Suziku, W., Parte, K. (2012) (eds.). Bergey‘s manual of systematic bacteriology. Springer.
14.Bernier, A., Sagan, S.M. (2018). The Diverse Roles of microRNAs at the Host-Virus Interface. Viruses, 10 (8), 440. DOI: 10.3390/v10080440.
15.Brogaard, L., Larsen, L.E., Heegaard, P.M.H., Anthon, Ch., Gorodkin, J., Dürrwald, R., Skovgaard, K. (2018). IFN-λ and microRNAs are important modulators of the pulmonary innate immune response
16.against influenza A (H1N2) infection in pigs. PLoS One, 13 (4), e0194765. DOI: 10.1371/journal.pone.0194765.
17.Chen, X., Zhou, L., Peng, N., Yu, H., Li, M., Cao, Z., Lin, Y., Wang, X., Li, Q., Wang, J., She, Y., Zhu, C., Lu, M., Zhu, Y., Liu, S. (2017). MicroRNA-302a suppresses influenza A virus – stimulated
18.interferon regulatory factor-5 expression and cytokine storm induction. J. Biol. Chem., 292 (52), 21291–21303. DOI: 10.1074/jbc.M117.805937.
19.Das, K., Garnica, O., Dhandayuthapani, S. (2016). Modulation of Host miRNAs by Intercellular Bacterial Pathogens. Front. Cell. Infect. Microbiol., 6, 79. DOI:10.3389/fcimb.2016.00079.
20.Devadas, K., Biswas, S., Haleyurgirisetty, M., Ragupathy, V., Wang X., Lee, S., Hewlett, I. (2016). Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome
21.Expression Profiling Techniques. Viruses, 8 (5), 121. DOI: 10.3390/v8050121.
22.Dickey, L.L., Hanley, T.M., Huffaker, T.B., Ramstead, A.G., O‘Connell, R.M., Lane, T.E. (2017). MicroR-NA155 and Viral-Induced Neuroinflammation. J. Neuroimmunol., 308, 17–24.
23.Drury, R.E., O’Connor, D., Pollard, A.J. (2017). The Clinical Application of MicroRNAs in Infectious Disease. Front. Immunol., 8, 1182. DOI: 10.3389/fimmu.2017.01182.
24.Flór, T.B., Blom, B. (2016). Phatogens Use and Abuse MicroRNAs to Deceive the Immune System. Int. J. Mol. Sci., 17 (4), 538. DOI: 10.3390/ijms17040538.
25.Gołąb, J., Jakóbisiak, M., Lasek, W., Stokłosa, T. (2018). Immunologia. Wyd. 6. Warszawa: Wydawnictwo Naukowe PWN.
26.Hartung, A., Makarewicz, O., Egerer, R., Karrasch, M., Klink, A., Sauerbrei, A., Kentouche, K., Pletz, M.W. (2019). EBV miRNA expression profiles in different infection stages: A prospective cohort study. PloS One, 14 (2), e0212027. DOI: 10.1371/journal.pone.0212027.
27.Herrera-Uribe, J., Zaldivar-Lopez, S., Aguilar, C., Luque, C., Bautista, R., Carvajal, A., Claros, M.G., Garrido, J.J. (2018). Regulatory role of microRNA in mesenteric lymph nodes after Salmonella
28.Typhimurium infection. Vet. Res., 49 (1), 9. DOI: 10.1186/s13567-018-0506-1.
29.Huang, Y., Chen, C., Yuan, J., Li, H., Han, X., Chen, R., Guan, W., Zhong, N. (2019). Sputum Exosomal microRNAs Profiling Reveals Critical Pathways Modulated By Pseudomonas aeruginosa
30.Colonization In Bronchiectasis. Int. J. Chron. Obstruct. Pulmon. Dis., 14, 2563–2573. DOI: 10.2147/COPD. S219821.
31.Hukowska-Szematowicz, B., Deptuła, W. (2010). Biologiczna rola mikroRNA (miRNA) nowe dane. Post. Biol. Komór., 37, 585–597.
32.Jeker, L.T., Marone, R. (2015). Targeting microRNAs for Immunomodulation. Curr. Opin. Pharmacol., 23, 25–31. DOI: 10.1016/j.coph.2015.05.004.
33.King, B.C., Esguerra, J.L.S., Golec, E., Eliasson, L., Kamper, C., Blom, A.M. (2016). CD46 activation regulates miR-150-mediated control of GLUT1 expression and cytokine secretion in human CD4+ T
34.cells. J. Immunol., 196 (4), 1636–1645. DOI: 10.4049/jimmunol.1500516.
35.Kumar, A., Kumar, A., Ingle, H., Kumar, S., Mishra, R., Verma, M.K., Biswas, D., Kumar, N.S., Mishra, A., Raut, A.A., Takaoka, A., Kumar, H. (2018). MicroRNA hsa-miR-324-5p Suppresses H5N1 Vi-rus
36.Replication by Targeting the Viral PB1 and Host CUEDC2. J. Virol., 92 (19), e01057–18. DOI: 10.1128/JVI.01057-18.
37.Kumar, M., Sahu, S.K., Kumar, R., Subuddhi, A., Maji, R.K., Jana, K., Gupta, P., Raffetseder, J., Lerm, M., Ghosh, Z., van Loo, G., Beyaert, R., Gupta, U.D., Kundu, M., Basu, J. (2015). MicroRNA let-7
38.modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell Host Microbe, 17 (3), 345–356. DOI: 10.1016/j.chom.2015.01.007.
39.Lewandowisz-Uszyńska, A., Naporowski, P., Pasternak, G., Witkowska, D. (2018). Identyfikacja czynni-ków etiologicznych wybranych zakażeń bakteryjnych i wirusowych na podstawie testów
40.serologicznych. Postępy Hig. Med. Dosw., 72, 1162–1178. DOI:10.5604/01.3001.0012.8266.
41.Li, M., Wang, J., Fang, Y., Gong, S., Li, M., Wu, M., Lai, X., Zeng, G., Wang, Y., Yang, K., Huang, X. (2016). MicroRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric
42.oxide production. Sci. Rep., 6 (30), 23351. DOI: 10.1038/srep23351.
43.Li, X., He, S., Li, R., Zhou, X., Zhang, S., Yu, M., Ye, Y., Wang, Y., Huang, C., Wu, M. (2016). Pseudomo-nas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-
44.mediated immune activation and infiltration. Nat. Microbiol., 1 (10), 16132. DOI: 10.1038/nmicrobiol.2016.132.
45.Mahesh, G., Biswas, R. (2019). MicroRNA-155: A Master Regulator of Inflammation. J. Interferon Cyto-kine Res., 39, 321–330. DOI: 10.1089/jir.2018.0155.
46.Michlewski, G., Caceres, J.F. (2019). Post-transcriptal control of miRNA biogenesis. RNA, 25 (1), 1–16. DOI: 10.1261/rna.068692.118.
47.Modai, S., Farberov, L., Herzig, E., Isakov, O., Hizi, A., Shomron, N. (2019).IDHIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication. PLoS One, 14 (1), e0211111. DOI: 10.1371/journal.pone.0211111.
48.Muraleedharan, C.K., McClellan, S.A., Ekanayaka, S.A., Francis, R., Zmejkoski, A., Hazlett, L.D., Xu, S. (2019). The miR-183/96/182 cluster regulates macrophage functions in response to
49.Pseudomonas aeruginosa. J. Innate. Immun., 11 (4), 347–358. DOI: 10.1159/000495472.
50.Naveed, A., ur-Rahman, S., Abdullah, S., Naveed, M.A. (2017). A Concise Review of MicroRNA Exploring the Insights of MicroRNA Regulations in Bacterial, Viral and Metabolic Diseases. Mol.
51.Biotechnol., 59 (11–12), 518–529. DOI: 10.1007/s12033-017-0034-7.
52.Nazimek, K., Filipczak-Bryniarska, I., Bryniarski, K. (2015). Rola leków, egzosomów I cząsteczek miRNA w modulacji aktywności immunologicznej makrofagów. Postępy Hig. Med. Dosw., 69,
53.1114–1129.
54.Ojha, C.R., Rodriguez, M., Dever, S.M., Mukhopadhyay, R., El-Hage, N. (2016). Mammalian microRNA: an important modulator of host-patogen interactions in human viral infections. J. Biomed. Sci., 23
55.(1), 74. DOI: 10.1186/s12929-016-0292-x.
56.Olejniczak, M., Kotowska-Zimmer, A., Krzyzosiak, W. (2018). Stress-induced changes in miRNA biogen-esis and functioning. Cell. Mol. Life Sci., 75 (2), 177–191. DOI: 10.1007/s00018-017-2591-0.
57.Ortega, P.A.S., Saulle, I., Mercurio, V., Ibba, S.V., Lori, E.M., Fenizia, C., Masetti, M., Trabattoni, D., Caputo, S.L., Vichi, F., Mazzotta, F., Clerici, M., Biasin, M. (2018). Interleukin 21
58.(IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS, 32 (17), 2453–2461. DOI: 10.1097/QAD.0000000000001938.
59.Pfeffer, S., Zavolan, M., Grässer, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, Ch., Tuschl, T. (2004). Identification of Virus-Encoded MicroRNAs. Science, 304 (5671).
60.734–736. DOI: 10.1126/science.1096781.
61.Poczęta, M., Nowak, E., Bieg, D., Bednarek, I. (2018). Modyfikacje epigenetyczne a ekspresja genów w nowotworzeniu. Ann. Acad. Med. Siles., 72, 80–89. DOI: 10.18794/aams/77013.
62.Pong, S.K., Gullerova, M. (2018). Noncanonical finctions of microRNA pathway enzymes – Drosha, DGCR8 and Ago proteins. FEBS Lett., 592 (17), 2973–2986. DOI:10.1002/1873-3468.13196.
63.Rivera, A., Barr, T., Rais, M., Engelmann, F., Messaoudi, I. (2016). microRNAs Regulate Host Immune Response and Pathogenesis During Influenza Infection in Rhesus Macaques. Viral Immunol., 29
64.(4), 212–227. DOI: 10.1089/vim.2015.0074.
65.Shin, H., Jeon, J., Lee, J-H., Jin, S., Ha, U-H. (2017). Pseudomonas aeruginosa GroEL stimulates production of PTX3 by activating the NF-κB pathway and simultaneously downregulating microRNA-9.
66.Infect. Immun., 85 (3), e00935-16. DOI: 10.1128/IAI.00935-16.
67.Szewczyk, E.M., Dudkiewicz, B., Kwaszewska, A., Lisiecki, P., Różalska, M., Sobiś-Glinkowska, M., Sza-rapińska-Kwaszewska, J., Szemraj, J., Szemraj, M., Wysocki, P. (2013). Diagnostyka
68.bakteriologicz-na. Warszawa: Wydawnictwo Naukowe PWN.
69.Świetlik, W.Z., Szemraj, J. (2017). Krążące miRNA jako nieinwazyjne biomarkery diagnostyczne, progno-styczne oraz predykcyjne w terapii niedrobnokomórkowego raka płuca. Postępy Hig. Med.
70.Dosw., 71, 649–661. DOI:10.5604/01.3001.0010.3845.
71.von Both, U., Berk, M., Agapow, P.M., Wright, J.D., Git, A., Hamilton, M.S., Goldgof, G., Siddiqui, N., Bellos, E., Wright, V.J., Coin, L.J., Newton, S.M., Levin, M. (2018). Mycobacterium tuberculosis
72.exploits a molecular offswitch of the immune system for intercellular survival. Sci. Rep., 8 (1), 661. DOI: 10.1038/s41598-017-18528-y.
73.Wang, M., Yu, F., Wu, W., Wang, Y., Ding, H., Qian, L. (2018). Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int. J. Biol. Sci., 14 (5), 565–576. DOI: 10.7150/ijbs.24562.
74.Xu, S., Hazlett, L.D. (2019). MicroRNAs in ocular infection. Microorganisms, 7 (9), 359. DOI: 10.3390/ microorganisms7090359.
75.Yao, M., Gao, W., Tao, H., Yang, J., Liu, G., Huang, T. (2015). Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis. Mol. Genet.
76.Genom-ics., 291 (2), 789–799. DOI: 10.1007/s00438-015-1146-z.
77.Yao, M., Gao, W., Yang, J., Liang, X., Luo, J., Huang, T. (2016). The regulation roles of miR-125b, miR-221 and miR-27b in porcine Salmonella infection signalling pathway. Biosci. Rep., 36, e00375. DOI: 10.1042/BSR20160243.
78.Zhang, F., Sun, X., Zhu, Y., Qin, W. (2019). Downregulation of miR-146a inhibits influenza A virus replication by enhancing the type I interferon response in vitro and in vivo. Biomed. Pharmacother., 111, 740–750. DOI: 10.1016/j.biopha.2018.12.103.
79.Zhao, L., Zhu, J., Zhou, H., Zhao, Z., Zou, Z., Liu, X., Lin, X., Zhang, X., Deng, X., Wang, R., Chen, H., Jin, M. (2015). Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated
80.innate immunity that antagonizes H5N1 IAV replication in A549 cells. Sci. Rep., 5, 14991. DOI: 10.1038/ srep14991.
81.Zhou, X., Li, X., Wu, M. (2018). miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal. Transduct. Tar., 3, 14. DOI: 10.1038/s41392-018-0006-9.
82.Zuo, L., Yue, W., Du, S., Xin, S., Zhang, J., Liu, L., Li, G., Lu, J. (2017). An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virol. Sin., 32 (3), 175–187. DOI: 10.1007/s12250-017-3996-5.