Acta Biologica

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Acta Biologica

ISSN: 2450-8330     eISSN: 2353-3013    OAI    DOI: 10.18276/ab.2020.27-14
CC BY-SA   Open Access   DOAJ

Issue archive / No. 27
Endophytic colonization of tomato by Beauveria bassiana for control of the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

Authors: Eliza Pourtaghi
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran

Reza Talaei-Hassanloui ORCID
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran

Fatemeh Nasibi
Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman

Khalil-Berdi Fotouhifar
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran
Keywords: colonization endophyte entomopathogenic fungus leaf spray Whitefly
Data publikacji całości:2020
Page range:12 (149-160)
Cited-by (Crossref) ?:

Abstract

We evaluated the efficacy of four different methods for endophytic inoculation of entomo- pathogenic fungus Beauveria bassiana in tomato plants. Fourteen days after inoculation, root dipping and leaf spraying allowed recovery of B. bassiana from leaves, while the fungus was recovered from roots in all inoculation methods, except soil drenching. Significant increases in mortalities of nymphs and adults of the greenhouse whitefly, 36 to 52%, were recorded on B. bassiana-endophyt plants. The total phenolic and protein contents of tomato plants were increased by endophyte colonization. Results of this study confirm the efficiency of foliar spraying of B. bassiana for colonization in tomato plants and its insecticidal activity against whitefly. The persistence of B. bassiana as endophyte was confirmed up to 56 days after inoculation. Given the insecticidal activity and beneficial effects of the endophyte on plant growth, B. bassiana could be considered as a suitable element in integrated pest management.
Download file

Article file

Bibliography

1.Afandhi, A., Widjayanti, T., Emi, A.A.L., Tarno, H., Afyanti, M., Handoko, R.N.S. (2019). Endophytic fungi Beauveria bassiana Balsamo accelerates growth of common bean (Phaeseolus vulgaris L.).
2.Chem. Boil. Technol. Agric, 6, 11. DOI: 10.1186/s40538-019-0148-1.
3.Akello, J., Sikora, R. (2012). Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control, 61,
4.215–221.
5.Allegrucci, N., Velazquez, M.S., Russo, M.L., Perez, E., Scorsetti, A.C. (2017). Endophytic colonisation of tomato by the entomopathogenic fungus Beauveria bassiana: the use of different inoculation
6.techniques and their effects on the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). J. Plant Prot. Res., 57, 331–337.
7.Arnold, A.E. (2008). Endophytic fungi: hidden components of tropical community ecology. Tropical Forest Community Ecology (pp. 254–271), S.A. Schnitzer, W.P. Carson (eds). New York: John
8.Wiley & Sons.
9.Bamisile, B.S., Dash, C.K., Akutse, K.S., Qasim, M., Aguila, L.C.R., Wang, F., Keppanan, R., Wang, L. (2019). Endophytic Beauveria bassiana in foliar-treated citrus limon plants acting as a growth
10.suppressor to three successive generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects, 10, 176. DOI: 10.3390/insects10060176.
11.Behie, S.W., Bidochka, M.J. (2014). Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl. Environ.
12.Microbiol., 80, 1553–1560.
13.Biswas, C., Dey, P., Satpathy, S., Satya, P. (2012). Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection
14.using scar marker. BioControl, 57, 565–571.
15.Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254.
16.Brownbridge, M., Reay, S.D., Nelson, T.L., Glare, T.R. (2012). Persistence of Beauveria bassiana (Asco-mycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and
17.seedlings. Biol. Control, 61, 194–200.
18.Cherry, A.J., Banito, A., Djegui, D., Lomer, C. (2004). Suppression of the stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize following seed dressing, topical application and stem
19.injection with African isolates of Beauveria bassiana. Int. J. Pest Manage., 50, 67–73.
20.Garrido-Jurado, I., Resquín-Romero, G., Amarilla, S., Ríos-Moreno, A., Carrasco, L., QuesadaMoraga, E. (2017). Transient endophytic colonization of melon plants by entomopathogenic fungi after
21.foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). J. Pest Sci., 90, 319–330.
22.Gasoni, A.B., Gurfinkel, B.S. (2009). Biocontrol of Rhizoctonia solani by the endophytic fungus Clador-rhinum foecundissimum in cotton plants. Australas. Plant Pathol., 38, 389–391.
23.Goettel, M.S., Inglis, G.D. (1997). Fungi: Hyphomycetes. In: L.A. Lacey (ed.), Manual of Technique of Insect Pathology (pp. 213–249). London: Academic Press.
24.Gomez-Vidal, S., Salinas, J., Tena, M., Lopez-Llorca, L.V. (2009). Proteomic analysis of date palm (Phoe-nix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi.
25.Electrophoresis, 30, 2996–3005.
26.Gonzalez-Mas, N., Cuenca-Medina, M., Gutiérrez-Sánchez, F., Quesada-Moraga, E. (2019). Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton
27.aphid, Aphis gossypii, and its natural enemies in melon. J. Pest Sci., 92, 1271–1281.
28.Gunatilaka, A.A. (2006). Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J. Nat. Prod., 69, 509–526.
29.Gurulingappa, P., Sword, G.A., Murdoch, G., McGee, P.A. (2010). Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol. Control, 55,
30.34–41.
31.Gurulingappa, P., Mcgee, P.A., and Sword, G. (2011). Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and
32.secondary metabolites. Crop Prot., 30, 349–353.
33.Jaber, L.R., Araj, S.E., Qasem, J.R. (2018). Compatibility of endophytic fungal entomopathogens with plant extracts for the management of sweetpotato whitefly Bemesia tabaci Gennadius
34.(Homoptera: Aleyrodidae). Biol. Control, 117, 164–171.
35.Kosari, A.A., Sahragard, A., Talaei-Hassanloui, R. (2016). Effect of host plant on the virulence of entomo-pathogenic fungus Beauveria bassiana against Tetranychus urticae and predatory bug Orius
36.niger. Biol. Control Pest Plant Dis., 5 (2), 129–138.
37.Lewis, L.C., Berry, E.C., Obrycki, J.J., Bing, L.A. (1996). Aptness of insecticides (Bacillus thuringien-sis and carbofuran) with endophytic Beauveria bassiana, in suppressing larval populations of the
38.European corn borer. Agr. Ecosys. Environ., 57, 27–34.
39.Mantzoukas, S., Chondrogiannis, C., Grammatikopoulos, G. (2015). Effects of three endophytic entomo-pathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides.
40.Entomol. Exp. Appl., 154, 78–87.
41.McKinnon, A.C., Glare, T.R., Ridgway, H.J., Mendoza-Mendoza, A., Holyoake, A., Godsoe, W.K., Buf-ford, J.L. (2018). Detection of the entomopathogenic fungus Beauveria bassiana in the
42.rhizosphere of wound-stressed Zea mays plants. Front. Microbiol., 9, 1161.
43.Ownley, B.H., Gwinn, K.D., Vega, F.E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55, 113–128.
44.Ownley, B.H., Griffin, M.R., Klingeman, W.E., Gwinn, K.D., Moulton, J.K., Pereira, R.M. (2008). Beauveria bassiana: Endophytic colonization and plant disease control. J. Invertebr. Pathol., 98,
45.267–270.
46.Ownley, B.H., Pereira, R.M., Klingeman, W.E., Quigley, N.B., Leckie, B.M. (2004). Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens,
47.255–269.
48.In: R. Lartey, A. Caesar, Emerging Concepts in Plant Health Management (pp. 255–269). Research
49.Signpost, Kerala, India.
50.Parsa, S., Ortiz, V., Vega, F.E. 2013. Establishing fungal entomopathogens as endophytes: towards endo-
51.phytic biological control. J. Vis. Exp., 74, e50360.
52.Posada, F., Vega, F.E. (2006). Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the
53.fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycoscience, 47, 284–289. Qayyum, M.A., Wakil, W., Arif, M.J., Sahi, S.T., Dunlap, C.A. (2015). Infestation of Helicoverpa
54.armig-
55.era by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control, 90, 200–207.
56.Renuka, S., Ramanujam, B., Poornesha, B. (2016). Endophytic ability of different isolates of entomopatho-genic fungi Beauveria bassiana (Balsamo) Vuillemin in stem and leaf tissues of maize (Zea
57.mays L.). Indian J. Microbiol., 56, 126–133.
58.Russo, M.L., Pelizza, S.A., Cabello, M.N., Stenglein, S.A., Scorsetti, A.C. (2015). Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana
59.(Ascomy-cota, Hypocreales). Biocontrol Sci. Technol., 25, 475–480.
60.Saikkonen, K., Wali, P., Helander, M., Faeth, S.H. (2004). Evolution of endophyte–plant symbioses. Trends. Plant Sci., 9, 275–280.
61.SAS Institute (2002). SAS/STAT Software. version 9.1. SAS Institute Inc., Cary, NC, USA.
62.Schlaeger, S., Pickett, J.A., Birkett, M.A. (2018). Prospects for management of whitefly using plant semio-
63.chemicals, compared with related pests. Pest Manag. Sci., 74, 2405–2411.
64.SeyedTalebi, F., Safavi, A., Talaei-Hassanloui, R., Bandani, A. (2016). Study of the virulence and conidial
65.germination types for some Beauveria bassiana isolate. Biol. Control Pest Plant Dis., 7 (1), 65–73. Shoresh, M., Harman, G.E. (2008). The molecular basis of shoot responses of maize seedlings to
66.Tricho-
67.derma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol., 147, 2147–2163. Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with
68.manual meth-
69.ods. Am. J. Enol. Vitic., 28, 49–55.
70.Vega, F.E. (2008). Insect pathology and fungal endophytes. J. Invertebr. Pathol., 98, 277–279.
71.Vega, F.E. (2018). The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia, 110, 4–30.
72.Vega, F.E., Posada, F., Aime, M.C., Pava-Ripoll, M., Infante, F., Rehner, S.A. (2008). Entomopathogenic fungal endophytes. Biol. Control, 46, 72–82.
73.Vidal, S., Jaber L.R. (2015). Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control. Curr. Sci., 109, 46–54.
74.Wagner, B.L., Lewis, L.C. (2000). Colonization of corn, Zea mays by the entomopathogenic fungus Beauveria bassiana. Appl. Environ. Microbiol., 66, 3468–3473.
75.Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73, 274–276.
76.Yang, M.Z., Huang, L.H., Ao, X.J., Ren, A.Y., Yuan, M.Q., Zhang, H.B. (2018). Endophytic Fungal strains Specifically Modified the Biochemical Status of Grape Cells. J. Plant Biol., 61, 210–216.